首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2015年)设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,由曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式。
(2015年)设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,由曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式。
admin
2021-01-25
137
问题
(2015年)设函数f(x)在定义域I上的导数大于零,若对任意的x
0
∈I,由曲线y=f(x)在点(x
0
,f(x
0
))处的切线与直线x=x
0
及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式。
选项
答案
先写出切线方程:y=f’(x
0
)(x—x
0
)+f(x
0
),令y=0,则可以得到 [*] 所以(x
0
,0)到切线与x轴交点的距离为|x一x
0
|=[*](x
0
,0)与切点距离为f(x
0
),可以得到切线与x=x
0
,x轴所围成的直角三角形面积为[*]整理得微分方程f
2
(x
0
)=8f’(x
0
),解该微分方程得 [*] 又因为f(0)=2,可以计算出[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/sux4777K
0
考研数学三
相关试题推荐
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记求:U和V的联合分布;
设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求(1)未知参数θ的最大似然估计量;(2)未知参数θ的矩估计量;(3)当样本值为1,1,2,1,3,2
[2005年]设二维随机变量(X,Y)的概率密度为求Z=2X-y的概率密度fZ(z);
[2004年]设A,B为两个随机事件,且P(A)=1/4,P(B|A)=1/3,P(A|B)=1/2,令求二维随机变量(X,Y)的概率分布;
设矩阵A、B满足关系式AB=A+2B,其中,求矩阵B.
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(1一,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A;(Ⅲ)求A及(A一E
(12年)证明:(-1<χ<1).
[2003年]已知齐次线性方程组其中试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
(2009年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则
任意一个三维向量都可以由α1=(1,0,1)T,α2=(1,一2,3)T,α3=(a,1,2)T线性表示,则a的取值为________。
随机试题
A.葡萄球菌B.β溶血性链球菌C.大肠杆菌D.淋球菌E.厌氧性链球菌
下列表述正确的是()。
大河乡下辖西河村、东河村,现在因为上属的巨河市(县级)人民政府决定在西河村与东河村之间的港口区建设新的小河村,实行重点管理,关于小河村村民委员会的说法,下列选项中不正确的是哪些?
《砌体结构设计规范》(GB50003一2011)中,砌体弹性模量的取值为()。[2010年真题]
工程项目竣工验收时,()必须向验收委员会汇报并提交历次质量缺陷的备案资料。
钢筋分项工程的钢筋加工,除焊接封闭环式箍筋外,箍筋的末端应作弯钩,弯钩形式应符合的规定是( )。
下面关于投标价的说法,正确的有()。
依次填入下面句中横线处的词语,最恰当的一组是( )。人的生存与发展依赖他人与社会。个人的成功______靠自我努力,______靠社会支持。
货船
To:subscriptions@businessasia.comFrom:jwest@masterfinance.comSubject:subscription#047890ToWhomItMayConcern,Iamwr
最新回复
(
0
)