首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,且满足条件A2+2A=O,已知A的秩R(A)=2. (1)求A的全部特征值. (2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
设A为三阶实对称矩阵,且满足条件A2+2A=O,已知A的秩R(A)=2. (1)求A的全部特征值. (2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
admin
2020-09-25
112
问题
设A为三阶实对称矩阵,且满足条件A
2
+2A=O,已知A的秩R(A)=2.
(1)求A的全部特征值.
(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
选项
答案
(1)设λ为A的一个特征值,对应的特征向量为α,则Aα=λα,A
2
α=λ
2
α,于是(A
2
+2A)α=(λ
2
+2λ)α.由条件A
2
+2A=O推知(λ
2
+2λ)α=0. 又由于α≠0,故有λ
2
+2λ=0,解得λ=一2,λ=0. 因为实对称矩阵A必可对角化,且R(A)=2,所以A~[*] 因此,矩阵A的全部特征值为λ
1
=λ
2
=一2,λ
3
=0. (2)矩阵A+kE仍为实对称矩阵.由(1)知,A+kE的全部特征值为一2+k,一2+k,k. 于是,当k>2时矩阵A+kE的全部特征值大于零.因此,矩阵A+kE为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/uPx4777K
0
考研数学三
相关试题推荐
已知X,Y为随机变量且P{X≥0,Y≥0}=,P{X≥0}=P{Y≥0}=,设A={max(X,Y)≥0},B={max(X,Y)<0,min(x,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)=________,P(B)=__
设连续型随机变量X的概率密度为f(x)=F(X)为X的分布函数,E(X)为X的数学期望,则P{F(X)>E(X)—1}=________.
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a,试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
[2013年]设函数f(x)在[0,+∞)上可导,f(0)=0,且证明:对上题中的a,存在ξ∈(0,a),使得
[2011年]曲线tan(x+y+π/4)=ey在点(0,0)处的切线方程为___________.
已知A是四阶矩阵,A*是A的伴随矩阵,若A*的特征值是1,一1,2,4,那么不可逆矩阵是()
设则f(x,y)在点(0,0)处
[2004年]二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x2)2的秩为_________.
假设二次型f(x1,x2,x3)=(x+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定,则a的取值为_____.
随机试题
在Word中,根据工作需要可以创建自己的工具栏,创建时使用的“自定义”命令在()菜单下。
A.桃仁B.银花C.肉桂D.当归E.薏苡仁
喘证的病变部位在
下列哪些情况,人民法院应裁定终结公示催告程序?()
建设工程勘察合同当事人包括发包人和勘察人。发包人通常可能是()。
【案例三】背景材料:某大型工程采用公开招标方式,承包工作范围包括土建、机电安装和装修工程。根据图纸计算,报价为15000万元,总工期为30个月,其中基础工程估价为2000万元,工期为8个月;上部结构工程估价为7000万元,工期为15个月
抓铲挖掘机的挖土特点是()。
灭火器维修由具有灭火器维修能力(从业资质)的企业进行。下列关于灭火器维修的叙述中,正确的有()
承载信息量的基本信号单位是
Thefirstparagraphisintendedto______.Advertisementsareaimedatpeoplesufferingfrommildcomplaintsbecause______.
最新回复
(
0
)