首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式 f(1+sinx)-3f(1一sinr)=8x+a(x), 其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式 f(1+sinx)-3f(1一sinr)=8x+a(x), 其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
admin
2021-01-19
106
问题
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式
f(1+sinx)-3f(1一sinr)=8x+a(x),
其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
选项
答案
对f(1+sinx)-3f(1-sinx)=8x+a(x)两边取极限,得 [*], 即有f(1)-3f(1)=0,于是得f(1)=0. 又因为[*], 可见有[*] =f(1)+3f’(1)=4f’(1)=8, 故得f’(1)=2. 由于f(x+5)=f(x),所以.f(6)=f(1)=0, [*] 故所求的切线方程为y=2(x—6),即2x-y-12=0.
解析
[分析] 求点(6,f(6))处的切线方程,关键是求出f’(6),而根据f(x)是周期为5的函数知,问题进一步转化为求在x=1处的导数f’(1),这恰好可通过已知关系式得到.
[评注] 若f(x)是以T为周期的可导函数,则由f(x+T)=f(x),有f’(x+T)=f’(x),即其导函数仍为同周期函数.本题只知f(x)连续,且只可推导出在一点。x=1处可导,因此其在x=6处的导数,不能直接套用公式f’(x+T)=f’(x),而必须根据导数的定义进行计算.
转载请注明原文地址:https://kaotiyun.com/show/uV84777K
0
考研数学二
相关试题推荐
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
设计算行列式|A|;
求下列方程的通解:(Ⅰ)y’’3y’=2-6x;(Ⅱ)y’’+y=ccosxcos2x.
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形记为D.求(Ⅰ)D的面积A;(Ⅱ)D绕直线x=1旋转一周所成的旋转体的体积V.
设A是n阶矩阵,下列结论正确的是().
设u=u(x,y)由方程组确定,其中φ(v),ψ(v)有连续的二阶导数且yφ’’(v)+ψ’’(v)≠0,求证:
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间(,1)内有且仅有一个实根;(2)记上题中的实根为xn,证明xn存在,并求此极限。[img][/img]
(2008年试题,二)已知
随机试题
足月儿的生理性黄疸是在出生后第()天开始。
A.禁用于早产儿、新生儿B.禁用于8岁以下儿童C.禁用于18岁以下儿童及青少年D.禁用于胆道阻塞患者E.禁用于单纯性疱疹性角膜炎患者氨基糖苷类()。
迅达路桥公司是一具备路桥建设资质的公司.通过招标与某市市政部门签订了承建彩虹桥的工程合同。工程合同签订后。迅达公司与甲设计院签订了彩虹桥设计合同。经发包人同意将彩虹桥两边的土石方工程分包给乙公司。两年后,该工程通过竣工验收。该桥设计的保质期为70年,该桥的
物业管理服务的基本内容按服务的性质和提供的方式可分为()
以下各项中,能提高企业已获利息倍数的是()。
跨系统联行往来的资金清算必须通过()办理。
下列句子中,表述不正确的是()。
下列句子中,对“不夸己能,不扬人恶,自然能化敌为友”理解正确的是()。
胡锦涛在八国集团同发展中国家领导人对话会议上,对粮食价格上涨问题提出的意见包括()
传播效果研究经历了哪些历史阶段?为什么过去效果研究一直占据着传播学研究的主流位置?(清华大学2007年研)
最新回复
(
0
)