首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知,求A的特征值与特征向量,并指出A可以相似对角化的条件.
已知,求A的特征值与特征向量,并指出A可以相似对角化的条件.
admin
2015-05-07
48
问题
已知
,求A的特征值与特征向量,并指出A可以相似对角化的条件.
选项
答案
由矩阵A的特征多项式 [*] 得到A的特征值是λ
1
=1-a,λ
2
=a,λ
3
=a+1. [*] 得到属于λ
1
=1-a的特征向量是α
1
=k
1
(1,0,1)
T
,k
1
≠0. [*] 得到属于λ
2
=a的特征向量是α
2
=k
2
(1,1-2a,1)
T
,k
2
≠0. [*] 得到属于λ
3
=a+1的特征向量α
3
=k
3
(2-a,-4a,a+2)
T
k
3
≠0. 如果λ
1
,λ
2
,λ
3
互不相同,即1-a≠a,1-a≠a+1,a≠a+1,即a≠1/2且a≠0,则矩 阵A有3个不同的特征值,A可以相似对角化. 若a=1/2即λ
1
=λ
2
=1/2,此时A只有一个线性无关的特征向量,故A不能相似对角化. 若a=0,即λ
1
=λ
3
=1,此时A只有一个线性无关的特征向量,故A不能相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/ui54777K
0
考研数学一
相关试题推荐
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
设A是3阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量.证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设A为4阶矩阵,满足等式(A-E)2=0,证明A可逆,并给出A-1.
设函数f(u,v)可微,若z=f[x,f(x,x)],求
设z=z(x,y)是由方程x2y—z=ψ(z+y+z)所确定的函数,其中ψ可导,且ψ’≠一1,则=_______.
设函数u(x,y)一ψ(x+y)+ψ(x—y)q+∫x—y0(t)ψ(f)dt,其中函数ψ具有二阶导数,ψ具有一阶导数,求
计算和直线y=-x所围成的区域.
求极限:
当x→1时,f(x)=(x2-1)/(x-1)e1/(x-1)的极限为().
一半径为R的球沉入水中,球面顶部正好与水面相切,球的密度为1,求将球从水中取出所做的功.
随机试题
下列关于《诗经》的说法正确的是()。
除规范特别规定外,公共建筑内的每个防火分区或一个防火分区的每个楼层,其安全出口数量应经计算确定,且不应少于()个,安全出口最近边缘之间的水平距离不应小于()m。
有效的管理控制不仅能够保证组织成员的行为在出现偏差时能够及时得以纠正,也能够修正、调整计划。()
临床诊断脊柱结核,下列哪项指标最有价值
林某,46岁。胃病26年,反复因饮食不慎,出现呕吐,时作时止,面色苍白,倦怠乏力,口干不欲饮,四肢不温,大便溏薄,舌质淡,脉濡弱。此时宜选用
某商业企业(增值税一般纳税人)9月向消费者个人销售金银首饰取得收入58950元,零售金银镶嵌首饰取得收入35780元,销售镀金首饰取得收入85000元,销售镀金镶嵌首饰取得收入12378元,取得金银首饰的修理、清洗收入780元。该企业上述业务应缴纳的消费税
劳动争议当事人申请仲裁的,应当从()其权利被侵害之日起1年内,以书面形式向劳动争议仲裁委员会申请仲裁。
李某是甲股份有限公司(简称甲公司)的实际控制人,因借款需要请求甲公司为其提供担保。甲公司遂召开股东大会对此事项进行表决。下列关于甲公司股东大会决议的表述中,正确的是()。
年轻的教帅初登讲台时往往十分紧张,担心自己是否能被学生和领导接受。此时期的教师处在()。
Ifyouarearesident,you’llfinditusefultoopena【T1】________.Allthelargebankshaveanetworkof【T2】________acrossthe
最新回复
(
0
)