首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,1]二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
设函数f(x)在[0,1]二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
admin
2018-11-21
59
问题
设函数f(x)在[0,1]二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
选项
答案
把函数f(x)在x=0与x=1分别展开成带拉格朗日余项的一阶泰勒公式,得 f(x)=f(0)+f’(0)x+[*]f"(ξ
1
)x
2
(0<ξ
1
<x), f(x)=f(1)+f’(1)(x一1)+[*]f"(ξ
2
)(x一1)
2
(x<ξ
2
<1). 在公式中取x=[*]并利用题设可得 [*] 两式相减消去未知的函数值f([*])即得f"(ξ
1
)一f"(ξ
2
)=8 → |f"(ξ
1
)|+|f"(ξ
2
)|≥8. 故在ξ
1
与ξ
2
中至少有一个使得在该点的二阶导数的绝对值不小于4,把该点取为ξ,就有ξ∈(0,1)使 |f"(ξ)|≥4.
解析
转载请注明原文地址:https://kaotiyun.com/show/v4g4777K
0
考研数学一
相关试题推荐
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x→a的凡阶无穷小,求证:f(x)的导函数f′(x)当x→a时是x-a的n-1阶无穷小.
设f(x)在x=0处二阶可导,又I==1,求f(0),f′(0),f″(0).
用泰勒公式确定下列无穷小量当x→0时关于x的无穷小阶数:(Ⅰ)(Ⅱ)(et-1-t)2dt.
设f(x)在[a,b]三次可微,证明:ξ∈(a,b),使得f(b)=f(a)+f′(b-a)3(ξ).
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f″(x)|≤b,a,b为非负数,求证:c∈(0,1),有|f′(c)|≤2a+b.
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
设方程组(Ⅰ)与方程组(Ⅱ)x1+2x2+x3=a一1有公共解,求a的值及所有公共解.
在区间[0,+∞)内方程+sinx一1=0().
求作一个齐次线性方程使得它的解空间由下面四个向量所生成α1=[一1,一1,1,2,0]T,α2=[1/2,一1/2,1/2,6,4]T,α3=[1/4,0,0,5/4,1]T,α4=[一1,一2,2,9,4]T.
设vn均收敛,则下列命题中正确的是().
随机试题
不同职系之间,繁简难易程度、责任轻重大小及任职条件十分相似的所有职位的集合是()
患者身肿日久,腰以下为甚,按之凹陷不易恢复,脘腹胀闷,纳减便溏,面色不华,神疲乏力,四肢倦怠,小便短少,舌质淡,苔白腻或白滑,脉沉缓或沉弱。治当选用
出生时体重2000g,该新生儿属于
预防疾病最有效的措施是
老人夜寐早醒而无虚烦之症,多属
在地籍管理信息系统中,可以通过()功能来进行流程调整和数据归档管理。
水变为水蒸气经历了三个阶段,其中水在整个的汽化阶段()。
硅酸盐系列水泥是以硅酸钙为主要成分的水泥熟料、一定量的混合材料和适量石膏,经共同磨细而成。按其性能和用途不同,又可分为通用水泥、专用水泥和特性水泥三大类。其下列不属于通用水泥的是()硅酸盐水泥。
“生命中曾经拥有的所有灿烂,终究都需要用寂寞来偿还。”这句话出自()
Ifyou’refindingittoughtolandajob,followahuntingplanwiththefollowingtactics:Setyour【C1】______.Whileyoush
最新回复
(
0
)