首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
设A=,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
admin
2019-08-28
21
问题
设A=
,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P
-1
AP=B.
选项
答案
由|λE-A|=[*]=(λ-1)
2
(λ-2)=0得 A的特征值为λ
1
=2,λ
2
=λ
3
=1; 由|λE-B|=[*]=(λ-1)
2
(λ-2)=0得 b的特征值为λ
1
=2,λ
2
=λ
3
=1; 由E-A=[*]得r(E-A)=1,即A可相似对角化; 再由E-B=[*]得r(E-B)=1,即B可相似对角化, 故A~B. [*] A的属于λ
2
=λ
3
=1的线性无关的特征向量为α
2
=[*], α
3
=[*] 令P
1
=[*] 由2E-B→[*]得B的属于λ
1
=2的线性无关特征向量为β
1
=[*] 由E-B→[*]得 B的属于λ
2
=λ
3
=1的线性无关的特征向量为β
2
=[*],β
3
=[*] 令P
2
=[*] 再令P=P
1
P
2
-1
=[*],则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/vvJ4777K
0
考研数学三
相关试题推荐
判别下列级数的敛散性.若收敛,需说明是绝对收敛还是条件收敛.
(2010年)设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则()
(2017年)设a0=1,a1=0,的和函数.(Ⅰ)证明幂级数的收敛半径不小于1;(Ⅱ)证明(1一x)S’(x)-xS(x)=0(x∈(一1,1)),并求S(x)的表达式.
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程的解.求方程通解及方程.
已知线性方程组Ax=b存在2个不同的解.求方程组Ax=b的通解.
设向量组α1=(a,2,10)T,α2=(-2,1,5)T,α3=(-1,1,4))T,β=(1,b,c)T.试问:当a,b,c满足什么条件时(1)β可由α1,α2,α3线性表出,且表示唯一?(2)β不能由α1,α2,α3线性表出?(3)β可由α1
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且A的秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解X=()
设A是3阶方阵,A*是A的伴随矩阵,A的行列式|A|=1/2,求行列式|(3A)-1-2A*|的值.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:A2;
随机试题
阅读((五代史伶官传序》结尾一段文字,然后回答下题。《书》曰:“满招损,谦得益。”忧劳可以兴国,逸豫可以亡身,自然之理也。故方其盛也,举天下之豪杰,莫能与之争;及其衰也,数十伶人困之,而身死国灭,为天下笑。夫祸患常积于忽微,而智勇多困于所溺,岂独
A.两相气雾剂B.三相气雾剂C.抛射剂D.耐压容器E.阀门系统
Word中通过格式菜单中的“段落”命令实现的操作是( )。
短期借款往往有一定的信用条件,下列不属于其内容的是()。
某校将成绩较好的学生单独编班,并组织优秀师资对这个班进行重点辅导,提高了中考优秀率,得到了该班学生家长的好评。该校的做法()。
Anniehasa______,andsheisgoingtoseeherdentisttoday.
含羞草的感应性对它生存的主要意义是()。
请根据“给定资料1~9”概述我国电子商务发展过程中存在哪些问题?要求:概括全面,条理清楚,语言流畅,不超过200字。请以“商务新锐”为题,写一篇文章。要求:(1)参考给定资料,观点明确,内容充实,结构完整,语言生动;(2)对在当前电子商
“发展个人天赋的内在力量,使其经过锻炼,使人能尽其才,能在社会上达到他应有的地位。这就是教育目的。”这一论断反映了教育目的的
软件系统总体结构图的作用是
最新回复
(
0
)