首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
设A=,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
admin
2019-08-28
36
问题
设A=
,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P
-1
AP=B.
选项
答案
由|λE-A|=[*]=(λ-1)
2
(λ-2)=0得 A的特征值为λ
1
=2,λ
2
=λ
3
=1; 由|λE-B|=[*]=(λ-1)
2
(λ-2)=0得 b的特征值为λ
1
=2,λ
2
=λ
3
=1; 由E-A=[*]得r(E-A)=1,即A可相似对角化; 再由E-B=[*]得r(E-B)=1,即B可相似对角化, 故A~B. [*] A的属于λ
2
=λ
3
=1的线性无关的特征向量为α
2
=[*], α
3
=[*] 令P
1
=[*] 由2E-B→[*]得B的属于λ
1
=2的线性无关特征向量为β
1
=[*] 由E-B→[*]得 B的属于λ
2
=λ
3
=1的线性无关的特征向量为β
2
=[*],β
3
=[*] 令P
2
=[*] 再令P=P
1
P
2
-1
=[*],则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/vvJ4777K
0
考研数学三
相关试题推荐
设二维连续型随机变量(X,Y)在区域D上服从均匀分布,其中D={(x,y)|x+y|≤1,|x一y|≤1},求X的边缘密度fX(x)与在X=0条件下,关于Y的条件密度fY|X(y|0).
已知级数条件收敛,则常数p的取值范围是
(1998年)设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所形成的旋转体体积为试求f(x)所满足的微分方程,并求该微分方程满足条件的解.
(2002年)设函数f(x),g(x)在[a,b]上连续,且g(x)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx.
设A=,E为3阶单位矩阵.求满足AB=E的所有矩阵B.
设有向量α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)可由α1,α2,α3惟一地线性表示,并求出表示式;(3
设矩阵A,B满足A*BA=2BA-8E,其中A=,E为单位矩阵,A*为A的伴随矩阵,则B=_______.
设A=,A*是A的伴随矩阵,则(A*)-1=_______.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:A2;
设3阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
随机试题
曾国藩在古文理论方面的独创。
Virchow淋巴结穿刺标本中发现癌细胞,最可能的原发灶是()。
隔姜灸可用于治疗( )。
下列关于实证和虚证鉴别的描述,错误的是
中国药典(2000年版)规定检查黏度的药物为
20×4年2月,某市财政局派出检查组对某国有外贸企业20×3年度的会计工作进行检查,发现存在以下情况:(1)20×3年2月,该企业财务处处长安排其侄女(持有会计从业资格证书)在财务处任出纳,并负责保管会计档案。(2)发现一张发票“金额”
某服装外贸企业2010年度发生的经济业务如下所示:取得销售收入共计1000万元,支付合理的工资薪金共计300万元,业务宣传费160万元,职工教育经费15万元,利润总额为500万元。另外,企业购置安全生产专用设备支出100万元,已投入使用。
完型一顿悟学习理论的提出者是()。
给定资料1.大庆油田、长春一汽、鞍山钢铁,这些都曾是“共和国长子”东北的耀眼标签,作为建国初期的工业和农业基地,东北曾“风光无两”。但在宏观经济下行压力增大、东北计划经济色彩过重、产业结构单一等因素的影响下,东北经济近年来陷入“失速”困境。20
(2009年单选6)按照规则规定的行为模式的不同,法律规则可以分为()。
最新回复
(
0
)