设f′(x)连续,f(0)=0,f′(0)≠0。F(x)=∫0xtf(t2-x2)dt,且当x→0时,F(x)~xn,求n及f′(0).

admin2022-08-19  20

问题 设f′(x)连续,f(0)=0,f′(0)≠0。F(x)=∫0xtf(t2-x2)dt,且当x→0时,F(x)~xn,求n及f′(0).

选项

答案F(x)=∫0xtf(t2-x2)dt=1/2∫0xf(t2-x2)d(t2-x2) [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/wNR4777K
0

最新回复(0)