设f(x)在[a,b]连续,在(a,b)可导,f(a)=f(b),且f(x)不恒为常数,求证:在(a,b)内存在一点ξ,使得f’(ξ)>0.

admin2021-11-09  21

问题 设f(x)在[a,b]连续,在(a,b)可导,f(a)=f(b),且f(x)不恒为常数,求证:在(a,b)内存在一点ξ,使得f’(ξ)>0.

选项

答案若不然=>[*]x∈(a,b),f’(x)≤0=>f(x)在[a,b]单调不增=>[*]x∈[a,b],f(a)≥f(x)≥f(b)=>f(x)≡f(a)=f(b)在[a,b]为常数,矛盾了.

解析
转载请注明原文地址:https://kaotiyun.com/show/kSy4777K
0

最新回复(0)