若f(x)在x=0点连续,且f(x+y)=f(x)+f(y)对任意的x、y∈(-∞,+∞)都成立,试证明f(x)为(-∞,+∞)上的连续函数。

admin2022-09-05  39

问题 若f(x)在x=0点连续,且f(x+y)=f(x)+f(y)对任意的x、y∈(-∞,+∞)都成立,试证明f(x)为(-∞,+∞)上的连续函数。

选项

答案由已知条件可得对任意的x、y∈(-∞,+∞)都有f(x)=f(x+0)=f(x)+f(0),所以f(0)=0,又因为f(x)在x=0点连续,即有 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/wrR4777K
0

最新回复(0)