首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(04年)设n阶矩阵A= (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P-1AP为对角矩阵.
(04年)设n阶矩阵A= (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P-1AP为对角矩阵.
admin
2021-01-25
45
问题
(04年)设n阶矩阵A=
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使P
-1
AP为对角矩阵.
选项
答案
(1)当b≠0时,A的特征多项式为 |λE-A|=[*]=[λ-1(n-1)b](λ-(1-b)]
n-1
, 故A的特征值为λ
1
=1+(n-1)b,λ
2
=…=λ
n
=1-b. 对于λ
1
=1+(n-1)b,设对应的一个特征向量为ξ
1
,则 [*] 解得ξ
1
=(1,1,…,)
T
,所以,属于λ
1
的全部特征向量为 kξ
1
=k(1,1,…,1)
T
,其中k为任意非零常数. 对于λ
2
=…=λ
n
=1-b,解齐次线性方程组[(1-b)E-A]χ=0,由 [*] 解得基础解系为ξ
2
=(1,-1,0,…,0)
T
,ξ
3
=(1,0,一1,…,0)
T
,…,ξ
n
=(1,0,0,…,-1)
T
.故属于λ
2
=…=λ
n
的全部特征向量为 k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
,其中k
2
,k
3
,…,k
n
为不全为零的任意常数. 当b=0时,A=E,A的特征值为λ
1
=λ
2
=…=λ
n
=1,任意n维非零列向量均是A的特征向量. (2)当b≠0时,A有n个线性无关的特征向量,令矩阵P=[ξ
1
ξ
2
…ξ
n
],则有 P
-1
AP=diag(1+(n-1)b,1-b,…,1-6). 当b=0时,A=E,对任意n阶可逆矩阵P,均有P
-1
AP=E.
解析
转载请注明原文地址:https://kaotiyun.com/show/xAx4777K
0
考研数学三
相关试题推荐
设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则下列服从相应区间或区域上均匀分布的是
设其中f(x)为连续函数,则等于
设矩阵A=,矩阵B满足AB+B+A+2E=0,则|B+E|=()
[2006年]设总体X的概率密度为f(x)=e-|x|/2,-∞<x<+∞.X1,X2,…,Xn为总体X的简单随机样本,其样本方差为S2,则E(S2)=___________.
[2017年]设X1,X2,…,Xn(n≥2)为来自总体N(μ,1)的简单随机样本,记则下列结论不正确的是().
设函数f(x)在[a,b]上有三阶连续导数。(Ⅰ)写出f(x)在[a,b]上带拉格朗日余项的二阶泰勒公式;(Ⅱ)证明存在一点η∈(a,b),使得
已知0<P(B)<1且P[(A1+A2)|B]=P(A1|B)+P(A2|B),则下列选项成立的是().
曲线y=lnx上与直线x+y=1垂直的切线方程为_____.
下列选项中正确的是()
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项中,正确的是().
随机试题
甲股份有限公司(以下简称“甲公司”)是一家上市公司,与股权投资有关的资料如下:(1)甲公司与乙公司均为增值税一般纳税人,适用的增值税税率为17%,适用的所得税税率均为25%,所得税均采用资产负债表债务法核算。2×16年1月1日,甲公司以定向增发普
政府及其所属部门滥用行政权力,强制经营者从事法律所禁止的排除或限制市场竞争的行为称为【】
患者,男,56岁。1周前右上腹部绞痛,伴恶心、呕吐,体温37.4℃,予以抗炎治疗后缓解。3天来,出现巩膜黄染,食欲缺乏,收入院。查体:腹软,无压痛,Murphy征(﹣),肝区轻叩痛。B超:胆囊10cm×5cm大小,其内可见多个点状回声,胆总管上段直径1.2
上消化道出血
肉眼血尿反复发作,最常见的肾小球疾病是
在项目目标动态控制的纠偏措施中,调整管理职能分工属于()。
下列行为没有违法的是()。
下列筹资方式中,没有筹资费用,但是财务风险较小,资本成本较高的筹资方式是()。
某案的两名凶手在以下五人中,经过公安部门的侦查后得知:①只有甲是凶手,乙才是凶手②只要丁不是凶手,丙就不是凶手③或乙是凶手,或丙是凶手④丁没有戊为帮凶,就不会作案⑤戊没有作案时间这件案件中的凶手是:
我国现场检查的原则是()。
最新回复
(
0
)