首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(04年)设n阶矩阵A= (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P-1AP为对角矩阵.
(04年)设n阶矩阵A= (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P-1AP为对角矩阵.
admin
2021-01-25
49
问题
(04年)设n阶矩阵A=
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使P
-1
AP为对角矩阵.
选项
答案
(1)当b≠0时,A的特征多项式为 |λE-A|=[*]=[λ-1(n-1)b](λ-(1-b)]
n-1
, 故A的特征值为λ
1
=1+(n-1)b,λ
2
=…=λ
n
=1-b. 对于λ
1
=1+(n-1)b,设对应的一个特征向量为ξ
1
,则 [*] 解得ξ
1
=(1,1,…,)
T
,所以,属于λ
1
的全部特征向量为 kξ
1
=k(1,1,…,1)
T
,其中k为任意非零常数. 对于λ
2
=…=λ
n
=1-b,解齐次线性方程组[(1-b)E-A]χ=0,由 [*] 解得基础解系为ξ
2
=(1,-1,0,…,0)
T
,ξ
3
=(1,0,一1,…,0)
T
,…,ξ
n
=(1,0,0,…,-1)
T
.故属于λ
2
=…=λ
n
的全部特征向量为 k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
,其中k
2
,k
3
,…,k
n
为不全为零的任意常数. 当b=0时,A=E,A的特征值为λ
1
=λ
2
=…=λ
n
=1,任意n维非零列向量均是A的特征向量. (2)当b≠0时,A有n个线性无关的特征向量,令矩阵P=[ξ
1
ξ
2
…ξ
n
],则有 P
-1
AP=diag(1+(n-1)b,1-b,…,1-6). 当b=0时,A=E,对任意n阶可逆矩阵P,均有P
-1
AP=E.
解析
转载请注明原文地址:https://kaotiyun.com/show/xAx4777K
0
考研数学三
相关试题推荐
设函数f(x)在x=a的某邻域内连续,且f(x)为极大值.则存在δ>0,当x∈(a一δ,a+δ)时必有:()
设A是三阶实对称矩阵,若对任意的三维列向量X,有XTAX=0,则().
设A,B,C为任意的三个事件,则与A一定互不相容的事件是().
A、 B、 C、 D、 C
[2016年]设A,B是可逆矩阵,且A与B相似,则下列结论错误的是().
设总体X的概率密度为其中θ(0<θ<1)未知,X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.判断是否为θ2的无偏估计量,并说明理由.
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
(1990年)设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b)其中a、b满足条件0≤a≤b≤a+b≤c.
设z=xg(x+y)+yφ(xy),其中g、φ具有二阶连续导数,则
设函数f(x)对任意的x均满足等式f(1+x)=af(x),且有f’(0)=b,其中a,b为非零常数,则()
随机试题
20根地址总线的寻址范围可达()。
如果脑血流再通超过时间窗时限,脑损伤继续加剧,产生的损伤称为
深Ⅱ度烧伤20%属于
下列各项中,应纳入收入总额计征企业所得税的是( )。
假如r表示贴现率(r为正值),那么r越小,则未来收入的现值就()。
甲公司为上市公司,2×17年1月1日发行在外的普通股股数为54000万股,2×17年度实现归属于普通股股东的净利润为35040万元,当年各期普通股平均市价均为每股10元。2×17年与权益性工具相关的交易或事项如下:①4月20日,宣告发放股票股利,以年初发行
课程特点在于动手“做”,在于手脑并用,以获得直接经验,这种课程类型属于()。
[2018年第52题]所有值得拥有专利的产品或设计方案都是创新,但并不是每一项创新都值得拥有专利;所有的模仿都不是创新,但并非每一个模仿者都应该受到惩罚。根据以上陈述,以下哪项是不可能的?
结合材料,回答问题:材料12013年3月25日,习近平在坦桑尼亚尼雷尔国际会议中心发表了题为《永远做可靠朋友和真诚伙伴》的重要演讲,全面阐述中非关系以及中国对非政策主张。习近平指出,中非关系是双方风雨同舟、患难与共,一步一个脚印走出来的
辩证唯物主义认识论是以实践观点和辩证观点为特征的反映论=这种以实践观点和辩证观点为特征的反映论,不仅驳倒了不可知主义怀疑论和唯心主义先验论,而且克服了旧唯物主义直观反映论的缺陷,实现了人类认识史上的变革。这种能动反映论的基本特点有()
最新回复
(
0
)