首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(04年)设n阶矩阵A= (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P-1AP为对角矩阵.
(04年)设n阶矩阵A= (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P-1AP为对角矩阵.
admin
2021-01-25
40
问题
(04年)设n阶矩阵A=
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使P
-1
AP为对角矩阵.
选项
答案
(1)当b≠0时,A的特征多项式为 |λE-A|=[*]=[λ-1(n-1)b](λ-(1-b)]
n-1
, 故A的特征值为λ
1
=1+(n-1)b,λ
2
=…=λ
n
=1-b. 对于λ
1
=1+(n-1)b,设对应的一个特征向量为ξ
1
,则 [*] 解得ξ
1
=(1,1,…,)
T
,所以,属于λ
1
的全部特征向量为 kξ
1
=k(1,1,…,1)
T
,其中k为任意非零常数. 对于λ
2
=…=λ
n
=1-b,解齐次线性方程组[(1-b)E-A]χ=0,由 [*] 解得基础解系为ξ
2
=(1,-1,0,…,0)
T
,ξ
3
=(1,0,一1,…,0)
T
,…,ξ
n
=(1,0,0,…,-1)
T
.故属于λ
2
=…=λ
n
的全部特征向量为 k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
,其中k
2
,k
3
,…,k
n
为不全为零的任意常数. 当b=0时,A=E,A的特征值为λ
1
=λ
2
=…=λ
n
=1,任意n维非零列向量均是A的特征向量. (2)当b≠0时,A有n个线性无关的特征向量,令矩阵P=[ξ
1
ξ
2
…ξ
n
],则有 P
-1
AP=diag(1+(n-1)b,1-b,…,1-6). 当b=0时,A=E,对任意n阶可逆矩阵P,均有P
-1
AP=E.
解析
转载请注明原文地址:https://kaotiyun.com/show/xAx4777K
0
考研数学三
相关试题推荐
设A,B是任意两个随机事件,又知BA,且P(A)<P(B)<1,则一定有
[2002年]设随机变量X和y的联合概率分布为则X2和Y2的协方差cov(X2,Y2)=___________.
[2015年]设二次型f(x1,x2,x3)在正交变换X=PY下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换X=QY下的标准形为().
[2003年]设n维向量α=[a,0,…,0,a]T,a<0,E为n阶单位矩阵,矩阵A=E-ααT,B=E+(1/a)ααT,其中A的逆矩阵为B,则a=____________.
[2006年]设α1,α2,…,αs都是n维列向量,A是m×n矩阵,则()成立.
[2008年]设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关;
一条曲线经过点(2,0),且在切点与y轴之间的切线长为2,求该曲线.
一枚均匀硬币重复掷3次,以X表示正面出现的次数,以Y表示前两次掷出正面的次数,试求随机变量X和Y的联合概率分布.
对于任意两事件A和B,与A∪B=B不等价的是().
[*]本题为未定式极限的求解,利用洛必达法则即可.
随机试题
国际经济组织基本的法律能力包括_______、_______和_______。
常用除热原的方法
治疗咳血肝火犯肺证,应首选
评标委员会成员拒绝在评标报告上签字又不书面说明其不同意见和理由的,()。
应用因果分析图法时应注意的事项包括()。
以下不属于项目投资决策主要方法的是()。
判断旅游者要求是否合理的标准有()。
2016年某市一次有关市民邻里关系的调查显示:在受访的951位市民中,“没有邻居”的有6位。“有邻居”的受访市民中,对邻居表示“了解”的占55.8%(“了解”分“很了解”和“部分了解”,占比分别为26.9%和28.9%),其余的表示“不了解”;对邻里关
在报表中要计算“实发工资”字段的平均值,应将控件的“控件来源”属性设置为()。
A、She’sworriedthatthemanwillmissnextweek’sdeadline.B、Shedoesn’tknowwhenthedeadlinefortuitionpaymentis.C、The
最新回复
(
0
)