首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则( )
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则( )
admin
2019-01-19
35
问题
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则( )
选项
A、无法确定方程组是否有解。
B、方程组有无穷多解。
C、方程组有唯一解。
D、方程组无解。
答案
B
解析
由于非齐次线性方程组的系数矩阵和增广矩阵的秩相同是方程组有解的充要条件,且方程组的未知数个数是6,而系数矩阵的秩为4,因此方程组有无穷多解,故选B。
转载请注明原文地址:https://kaotiyun.com/show/xmP4777K
0
考研数学三
相关试题推荐
设A是n阶反对称矩阵.(1)证明:对任何n维列向量α,恒有αTAα=0.(2)证明:对任何非零常数c,矩阵A+cE恒可逆.
已知3维列向量β不能由α1=能否相似对角化?若能则求出可逆矩阵P使P—1AP=A.若不能则说明理由。
设A是三阶实对称矩阵,特征值是1,0,一2,矩阵A的属于特征值1与一2的特征向量分别是(1,2,1)T与(1,一1,a)T,求Ax=0的通解.
已知ξ1=(1,1,0,0)T,ξ2=(1,0,1,0)T,ξ3=(1,0,0,1)T是齐次线性方程组(I)的基础解系,η1=(0,0,1,1)T,η2=(0,1,0,1)T是齐次线性方程组(Ⅱ)的基础解系,求方程组(I)与(Ⅱ)的公共解.
已知A=[α1,α2,α3,α4]是4阶矩阵,β是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=[α3,α2,α1,β一α4],求方程组Bx=α1—α2的通解.
设A、B都是n阶实对称矩阵,证明:存在正交矩阵P,使得P—1AP=B的充分必要条件是A与B有相同的特征多项式.
设函数f(x)、g(x)均可微,且满足条件u(x,y)=f(2x+5y)+g(2x一5y),u(x,0)=sin2x,u’y(x,0)=0.求f(x)、g(x)、u(x,y)的表达式.
已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为标准形f=3y12—6y22—6y32,其中矩阵Q的第1列是α1=()T.求二次型f(x1,x2,x3)的表达式.
二次型4x22一3x32+2ax1x2—4x1x3+8x2x3经正交变换化为标准形y12+6y22+by32,则a=__________.
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
随机试题
A.无反应(-)B.弱阳性(+)C.阳性(++)D.强阳性(+++)E.强阳性(++++)迟发型皮内试验出现红肿、硬结、水疱为
椎一基底动脉系统TIA一般不出现
久病患者,纳食减少,疲乏无力,腹部胀满,但时有缓减,腹痛而喜按,舌胖嫩而苔润,脉细弱而无力。其病机是
喉痉挛的诱发因素有()。
无机结合料稳定材料的目标配合比设计内容包括选择级配范围、确定结合料类型及掺配比例、验证混合料相关的设计及施工技术指标。()
土石坝土料填筑的压实参数主要包括()。
某建设工程总造价为3500万。建设方与施工方在合同中约定:无论何种原因,延误工期一日,施工单位应支付建设单位违约金10万元。后工程因多种原因共延误120天,则下列表述中正确的是()。
在文书校对中,只看校样不看原稿的校对方法称为()。
请阅读下列材料,并按要求作答。[img][/img]如指导高学段学生学习本节课内容,试确定教学目标。
关于劳动与技术教育,下列说法正确的是()。
最新回复
(
0
)