首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12. 求a,b的值.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12. 求a,b的值.
admin
2017-06-14
51
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12.
求a,b的值.
选项
答案
二次型f的矩阵为 [*] 设A的特征值为λ
i
(i=1,2,3). 由题设,有λ
1
+λ
2
+λ
3
=a+2+(-2)=1,λ
1
.λ
2
.λ
3
= [*] =-4a-2b
2
=-12. 得a=1,b=-2.
解析
转载请注明原文地址:https://kaotiyun.com/show/xpu4777K
0
考研数学一
相关试题推荐
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
若函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f"(x)+f(x)=2ex,则f(x)=_________.
设A,B为满足AB=0的任意两个非零矩阵,则必有
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
设已知线性方程组Ax=b存在2个小吲的解.求λ,a;
设求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
设向最组α1,α2,…,αs线性无关,则下列向量组线性相关的是
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22
(2010年试题,17)(I)比较的大小,说明理由.(Ⅱ)设求极限
(1998年试题,十二)已知线性方程组(I)的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22.…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组(Ⅱ)的通解,并说明理由.
随机试题
在运用资产基础法进行评估时,资产基础法的一个难点是()。
发送者方面容易出现障碍的情况主要有哪些?
态度的特性不包括()
It’sessentialthateverychild______thesameeducationalopportunity.
我国中小学常用的德育方法主要有哪些?
根据《药品管理法》和《药品管理法实施条例》,关于药品生产许可的说法正确的是()。
唐朝的“三司推事”是会审制度的重要开端,下列关于唐朝会审制度的说法中哪一项是不正确的?()
诱导空调系统优点包括( )
记正三角形的内切圆半径与其外接圆半径之比为m,正方体内切球的半径与外接球的半径之比为n,则m,n分别为().
ThemostfamouspainterinVictoria’shistoryisEmilyCarr.Whenshewasachild,shediscoveredthatwalkinginthewoods【1】mo
最新回复
(
0
)