首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ1+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ1+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
admin
2018-09-25
39
问题
设A是3阶矩阵,λ
1
,λ
2
,λ
3
是三个不同的特征值,ξ
1
,ξ
2
,ξ
3
是相应的特征向量.证明:向量组A(ξ
1
+ξ
2
),A(ξ
1
+ξ
3
),A(ξ
3
+ξ
1
)线性无关的充要条件是A是可逆矩阵.
选项
答案
A(ξ
1
+ξ
2
),A(ξ
2
+ξ
3
),A(ξ
3
+ξ
1
)线性无关 <=>λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
线性无关 <=>[λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
]=[ξ
1
,ξ
2
,ξ
3
] [*] 的秩为3 <=>|A|=λ
1
λ
2
λ
3
≠0,A是可逆矩阵(因为ξ
1
,ξ
2
,ξ
3
线性无关, [*] =2λ
1
λ
2
λ
3
).
解析
转载请注明原文地址:https://kaotiyun.com/show/yeg4777K
0
考研数学一
相关试题推荐
设A.B是n阶矩阵,E—AB可逆,证明E—BA可逆.
设A,B均为n阶矩阵,且AB=A+B,证明A—E可逆.
设f(x)是区间[-π,π]上的偶函数,且满足证明:f(x)在[-π,π]上的傅里叶级数展开式中系数a2n=0,n=1,2,….
设f(x)在[-2,2]上有连续的导数,且f(0)=0,F(x)=f(x+t)dt,证明级数绝对收敛.
将函数f(x)=sin(x+a)展开成x的幂级数,并求收敛域.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
设X1,X2,…,X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=a+b(X2+X3)2+c(X4+X5+X6)2+d(X7+X8+X9+X10)2服从χ2分布,并求自由度m.
随机试题
甲、乙、丙为某有限责任公司股东。现甲欲对外转让其股份,下列说法正确的是()。
风湿性二尖瓣狭窄的类型分为_________和_________。
输尿管结核患者,静脉肾盂造影的典型表现为
一个基团常有多种振动形式,其中能引起红外吸收的振动通常会出现一个相应的特征峰。根据特征峰鉴别化学基团的方法是()。
在现代风险收益模型中,风险是用()定义的。
从预警对象看,下列预警中,不属于农产品质量安全预警的是()。
简述教师的教育专业素养。
在教育过程中,教师对突发性事件作出迅速、恰当的处理被称为“教育机智”。这反映了教师劳动的哪一特点?()
有些台独分子论证说:凡属中华人民共和国政府管辖的都是中国人。台湾人现在不受中华人民共和国政府管辖,所以,台湾人不是中国人。以下哪一个推理明显说明上述论证不成立?
Whydidthemotheragreetogooutfordinner?
最新回复
(
0
)