首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线=1(0<a<4)与χ轴、y轴所围成的图形绕χ轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
设曲线=1(0<a<4)与χ轴、y轴所围成的图形绕χ轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
admin
2020-03-16
105
问题
设曲线
=1(0<a<4)与χ轴、y轴所围成的图形绕χ轴旋转所得立体体积为V
1
(a),绕y轴旋转所得立体体积为V
2
(a),问a为何值时,V
1
(a)+V
2
(a)最大,并求最大值.
选项
答案
曲线与χ轴和y轴的交点坐标分别为(a,0),(0,b),其中b=4-a. 曲线可化为y=[*], 对任意的[χ,χ+dχ][*][0,a],dV
2
=2πχ.ydχ=2πχ.[*]dχ, 于是V
2
=[*], 根据对称性,有V
1
=[*]ab
2
. 于是V(a)=V
1
(a)+V
2
(a)=[*]a(4-a) 令V′(a)=[*](4-2a)=0[*]a=2,又V〞(2)<0,所以a=2时,两体积之和最大,且最大值为V(2)=[*]π.
解析
转载请注明原文地址:https://kaotiyun.com/show/ys84777K
0
考研数学二
相关试题推荐
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.求方程组AX=0的通解.
证明:
假设:①函数y=f(x)(0≤x≤+∞)满足条件f(0)=0和0≤f(x)≤ex一1;②平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别相交于点P1和P2;③曲线y=f(x),直线MN与x轴所围成的封闭图形的面积S恒等于线段P1P2的长度。
证明:(1)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得|f(x)dx=f(η)(b一a);(2)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫22φ(x)dx,则至少存在一点ξ∈(1,3),使得φ’’(
已知二次型(a>0),通过正交变换化成标准形求参数a及所用的正交变换矩阵.
设Yx,Zx,Ux分别是下列差分方程的解yx+1+ayx=f1(x),yx+1+ayx=f2(x),yx+1+ayx=f3(x)求证:Zx=Yx+Zx+Ux是差分方程,yx+1+ayx=f1(x)+f2(x)+f3(x)的解.
设曲线y=a(a>0)与曲线y=lnχ在点(χ0,y0)处有公共的切线,求:(1)常数a及切点坐标;(2)两曲线与χ轴所围成的平面图形绕χ轴旋转所得旋转体的体积.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵。证明矩阵Q可逆的充分必要条件是αTA-1α≠b。
已知函数f(μ)具有二阶导数,且f’(0)=1,函数y=y(x)由方程y一xey-1=1所确定。设z=f(lny—sinx),求。
一条曲线经过点(2,0),且在切点与y轴之间的切线长为2,求该曲线.
随机试题
用自定心卡盘加工偏心工件时,测得偏心距小了0.1mm,应将垫片再加厚0.1mm。()
茅盾在“五四”时期发表了一系列文章,大力提倡的艺术主张是()
检验试验费是指对建筑材料、构件和建筑安装物进行一般鉴定、检查所发生的费用,包括()。
威廉指标是()。
幼儿园活动区出人口的地面上一般会有几双小脚印的图示,此环境创设有利于培养幼儿在活动区的()意识。
晴天:多云:阴天
人们在语言使用中可以独立运用的最小单位是()。
A、 B、 C、 D、 C
WhathappenedtoPetelastFourthofJuly?TheAmericanAcademyofOphthalmologycallsonconsumersto______.
ImprovingYourConversationSkillsSomecommonmistakeswehavemadeinourconversationsandthecorrespondingsolutions.
最新回复
(
0
)