首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η1,…,ηk是向量子空间V的一个规范正交基,α1,α2∈V,它们在此基下的坐标分别为k维实向量γ1,γ2.证明: (1)内积(α1,α2)=(γ1,γ2). (2)||αi|| =||γi||,i=1,2.
设η1,η1,…,ηk是向量子空间V的一个规范正交基,α1,α2∈V,它们在此基下的坐标分别为k维实向量γ1,γ2.证明: (1)内积(α1,α2)=(γ1,γ2). (2)||αi|| =||γi||,i=1,2.
admin
2017-08-07
34
问题
设η
1
,η
1
,…,η
k
是向量子空间V的一个规范正交基,α
1
,α
2
∈V,它们在此基下的坐标分别为k维实向量γ
1
,γ
2
.证明:
(1)内积(α
1
,α
2
)=(γ
1
,γ
2
).
(2)||α
i
|| =||γ
i
||,i=1,2.
选项
答案
(1)设γ
i
=(c
i1
,c
i2
…,c
ik
)
T
,则α
i
=c
i1
η
1
+c
i2
η
2
+…+c
ik
η
k
,i=1,2.于是 (α
1
,α
2
) =(c
11
η
1
+c
12
η
2
+…+c
1k
η
k
,c
21
η
1
+c
22
η
2
+…+c
2k
η
k
) =c
11
c
21
+c
12
c
22
+…+c
1k
c
2k
=(γ
1
,γ
2
). (2)当α
1
=α
2
时,用(1)得||α
i
||
2
=||γ
i
||
2
,从而||α
i
||=||γ
i
||,i=1,2.
解析
转载请注明原文地址:https://kaotiyun.com/show/yzr4777K
0
考研数学一
相关试题推荐
设A,B为同阶方阵,(Ⅰ)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(Ⅰ)的逆命题成立.
设A=,A*是A的伴随矩阵,则(A*)-1=_________.
A是n阶矩阵,且A3=0,则().
设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记:(Ⅰ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求D(T).
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
设总体X的分布函数为F(x),(X1,X2,…,Xn)是取自此总体的一个子样,若F(x)的二阶矩阵存在,为子样均值,试证(Xi-)与(Xj-)的相关系数j=1,2,…,n.
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系;(Ⅲ)方程组有解时,求出方程组的全部解.
设函数f(x,y)在D:x2+y2≤1有连续的偏导数,且在L:x2+y2=1上有f(x,y)≡0.证明:f(0,0)=,其中D2:r2≤x2+y2≤1.
(2004年试题,三)设A,B为随机事件,且令求:X与Y的相关系数ρxy
(1998年试题,十一)设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
随机试题
下列哪些行为应以编造、故意传播虚假信息罪论处?()
A.再生障碍性贫血B.海洋性贫血C.铁粒幼细胞性贫血D.缺铁性贫血E.慢性疾病贫血上述哪一种是正常红细胞性贫血
相差显微镜检查新鲜尿沉渣为变形红细胞血尿,提示病变在
A.秦艽B.防风C.秦艽D.牛膝E.板蓝根长圆锥形或圆柱形,根头部有明显密集环纹的药材是()。
连带责任具有( )特点。
()不是考核企业生产水平和经营状况的主要依据。
一般情况下,学习的熟练程度越高,记忆就越牢,遗忘也越慢。但学习也要有一定的限度,学习程度为()时,记忆效果最好
公安机关是政府的一个职能部门,但又不同于一般行政机关;人民警察是国家公务人员,但又不同于政府其他部门的公务员。因此,对人民警察的素质和职业道德必须有更高更严的要求。( )
规定“三三制”原则的宪法性文件是()。
IEEE802.3规定的Ethernet帧的最小长度为()B。
最新回复
(
0
)