首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η1,…,ηk是向量子空间V的一个规范正交基,α1,α2∈V,它们在此基下的坐标分别为k维实向量γ1,γ2.证明: (1)内积(α1,α2)=(γ1,γ2). (2)||αi|| =||γi||,i=1,2.
设η1,η1,…,ηk是向量子空间V的一个规范正交基,α1,α2∈V,它们在此基下的坐标分别为k维实向量γ1,γ2.证明: (1)内积(α1,α2)=(γ1,γ2). (2)||αi|| =||γi||,i=1,2.
admin
2017-08-07
66
问题
设η
1
,η
1
,…,η
k
是向量子空间V的一个规范正交基,α
1
,α
2
∈V,它们在此基下的坐标分别为k维实向量γ
1
,γ
2
.证明:
(1)内积(α
1
,α
2
)=(γ
1
,γ
2
).
(2)||α
i
|| =||γ
i
||,i=1,2.
选项
答案
(1)设γ
i
=(c
i1
,c
i2
…,c
ik
)
T
,则α
i
=c
i1
η
1
+c
i2
η
2
+…+c
ik
η
k
,i=1,2.于是 (α
1
,α
2
) =(c
11
η
1
+c
12
η
2
+…+c
1k
η
k
,c
21
η
1
+c
22
η
2
+…+c
2k
η
k
) =c
11
c
21
+c
12
c
22
+…+c
1k
c
2k
=(γ
1
,γ
2
). (2)当α
1
=α
2
时,用(1)得||α
i
||
2
=||γ
i
||
2
,从而||α
i
||=||γ
i
||,i=1,2.
解析
转载请注明原文地址:https://kaotiyun.com/show/yzr4777K
0
考研数学一
相关试题推荐
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3经正交变换x=Py化成.f=y22+2y32,P是三阶正交矩阵,试求常数a、β.
设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记:(Ⅰ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求D(T).
设n维向量a=(a,0,…,0,a)T,a>0,E为n阶单位矩阵,矩阵A=E-aaT,B=E+(1/a)aaT,其中A的逆矩阵为B,则a=________.
设总体X的分布函数为F(x),(X1,X2,…,Xn)是取自此总体的一个子样,若F(x)的二阶矩阵存在,为子样均值,试证(Xi-)与(Xj-)的相关系数j=1,2,…,n.
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则().
设A=,a=(a,1,1)T,已知Aa与a线性相关,则a=_________.
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
(2008年试题,20)设α,β为三维列向量,矩阵A=ααT+ββT,其中αT为α的转置,βT为β的转置.若α,β线性相关,则rA
(1997年试题,八)A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
随机试题
马斯洛的需要层次论是怎样划分的?
A.肾癌B.肾平滑肌脂肪瘤C.肾母细胞瘤D.高密度肾囊肿E.多囊肾患者影像检查中B超发现右肾有2cm大小结节,回声略高,不均匀。CT示结节内密度混杂,CT值一60~40HU不等,边缘清楚,首先应诊断为
对肾上腺皮质激素依赖的肾病综合征患者需加用
甲状腺功能亢进症(Graves病),男女之比为
假神最主要的病理机制是()
我党具有旺盛创造力的关键是()。
中国特色社会主义进入了新时代。做好新时代外交工作,首先要深刻领会党的十九大精神,正确认识当今时代潮流和国际大势。放眼世界,我们面对的是百年未有之大变局。21世纪以来,一大批新兴市场国家和发展中国家快速发展,世界多极化加速发展,国际格局日趋均衡,国际潮流大势
无限法偿和有限法偿
某商场的部门、员工和商品3个实体之间的关系如图5-4和表5-1至表5-4所示。假设每个部门有若干名员工,每种商品只能由一个部门负责销售。如果用户要求得到如表5-4所示的结果,则需要(60),并增加关系模式(61)。如果要求查询某部门负责销售的商品,则需
参照完整性规则包括更新规则、删除规则和_______规则。
最新回复
(
0
)