首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(aij)n×n的秩为,2,记A的元素aij的代数余子式为Aij,并记A的前r行组成的r×n矩阵为B,证明:向量组 α1=(Ar+1,1,…,Ar+1,n)T α1=(Ar+2,1,…,Ar+2,n)T …… αn
设矩阵A=(aij)n×n的秩为,2,记A的元素aij的代数余子式为Aij,并记A的前r行组成的r×n矩阵为B,证明:向量组 α1=(Ar+1,1,…,Ar+1,n)T α1=(Ar+2,1,…,Ar+2,n)T …… αn
admin
2018-08-03
22
问题
设矩阵A=(a
ij
)
n×n
的秩为,2,记A的元素a
ij
的代数余子式为A
ij
,并记A的前r行组成的r×n矩阵为B,证明:向量组
α
1
=(A
r+1,1
,…,A
r+1,n
)
T
α
1
=(A
r+2,1
,…,A
r+2,n
)
T
……
α
n—r
=(A
n1
,…,A
nn
)
T
是齐次线性方程组Bx=0的基础解系.
选项
答案
由于A的行向量组线性无关,故B的行向量组线性无关,→r(B)=r,→方程组Bx=0的基础解系含n一r个向量,所以,要证明α
1
,α
2
,…,α
n—r
是方程组Bx=0的基础解系,只要证明α
1
,α
2
,…,α
n—r
是Bx=0的线性无关解向量即可.首先,由于[*]a
ij
A
kj
=0(i=1,2,…,r;k=r+1,…,n),故α
1
,…,α
n—r
都是方程组Bx=0的解向量;其次,由于|A
*
|=|A|
n—1
≠0,知A
*
的列向量组线性无关,而α
1
,…,α
n—r
是A
*
的后n一r列,故α
1
,…,α
n—r
线性无关,因此α
1
,…,α
n—r
是Bx=0的线性无关解向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/zgg4777K
0
考研数学一
相关试题推荐
设随机变量X的密度函数为f(x)=,则P{|X—E(X)|<2D(X)}=___________.
设A=,方程组AX=β有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(I)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0→A(β1,β2,…,βn)=O→ABT=O→BAT=O.→α1,α2,…,αn为BY=O的一组解,而
a,b取何值时,方程组有解?
设A为n阶矩阵,若Ak—1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak—1α线性无关.
设α1,α2,…,αt为n个n维向量,证明:α1,α2,…,αt线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αt线性表示.
设α1,α2,…,αt为AX=0的一个基础解系,P不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
在全概率公式P(B)=P(Ai)P(B|AI)中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为
随机试题
免疫抑制剂治疗特发性血小板减少性紫癜的适应症是
(2005年)对于非线性控制系统的描述函数分析,试判断下列表述中哪项是错的?()
依据《中华人民共和国环境影响评价法》,作为一项整体建设项目的规划进行环境影响评价时,下列说法中正确的是()。
贷前调查包含的内容有()。
增值税一般纳税人支付的下列金额或费用中,可以按照10%的扣除率计算其进项税额的有( )。
我国风景名胜区按其景物的观赏、文化、科学价值,环境质量、规模大小、游览条件等可以划分为()。
情感领域的教学目标根据价值内化的程度分为()
Humanityusesalittlelessthanhalfthewateravailableworldwide.Yetoccurrencesofshortagesanddroughts(干旱)arecausing
Itshouldnotbeasurprise.Lonelinessandsocialisolationareontherise,【C1】______manytocallitanepidemic.Inrecentde
下列不属于网络拓扑结构形式的是()。
最新回复
(
0
)