首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有3阶实对称矩阵A满足A3-6A2+11A一6E=0,且|A|=6. 写出用正交变换将二次型f=xT(A+E)x化成的标准形(不需求出所用的正交变换);
设有3阶实对称矩阵A满足A3-6A2+11A一6E=0,且|A|=6. 写出用正交变换将二次型f=xT(A+E)x化成的标准形(不需求出所用的正交变换);
admin
2016-01-11
60
问题
设有3阶实对称矩阵A满足A
3
-6A
2
+11A一6E=0,且|A|=6.
写出用正交变换将二次型f=x
T
(A+E)x化成的标准形(不需求出所用的正交变换);
选项
答案
设λ是A的特征值,x是A的关于A所对应的特征向量,由A
3
一6A
2
+11A一6E=O得(λ
3
一6λ
2
+11λ一6)x=0,由于x≠0,所以λ
3
一6λ
2
+11λ一6=0,得λ=1,2,3.由于|A|=6,所以λ
1
=1,λ
2
=2,λ
3
=3为A的三个特征值.由于A+E仍是对称矩阵,其特征值为2,3,4,故存在正交变换x=Py,使y=x
T
(A+E)x=2y
1
2
+3y
2
2
+4y
3
2
.
解析
本题考查用正交变换化二次型为标准形和二次型正定性的判定.
转载请注明原文地址:https://kaotiyun.com/show/1v34777K
0
考研数学二
相关试题推荐
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(
设A=求a,b及正交矩阵P,使得PTAP=B.
(1)若A可逆且A~B,证明:A*~B*;(2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
设A是三阶矩阵,α1,α2,α3为3个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
f=(x1,x2,x3,x4)=XTAX的正惯性指数是2,且A2-2A=0,该二次型的规范形为________.
设f(x)是区间上的正值连续函数,且若把I,J,K按其积分值从小到大的次序排列起来,则正确的次序是
设A=,b=,方程组Ax=b有无穷多解.(Ⅰ)求a的值及Ax=b的通解;(Ⅱ)求一个正交变换x=Qy,化二次型f(x1,x2,x3)=xTAx为标准形.(Ⅲ)求一个可逆线性变换将(Ⅱ)中的f(x1,x2,x3)化为规范形.
设某企业生产一种产品,其成本C(Q)=-16Q2+100Q+1000,平均收益=a一(a>0,0<b<24),当边际收益MR=44,需求价格弹性Ep=时获得最大利润,求获得最大利润时产品的产量及常数a与b的值.
设f(x)为连续函数,并设∫01f(tx)dt=f(x)+xsinx,求f(x).
随机试题
属于附肢骨的是
中医外科成为独立专科的年代是
A、速尿(呋塞米)B、螺内酯C、糖皮质激素D、环磷酰胺E、环孢素A可导致出血性膀胱炎的药物是
烟气在加热炉回热装置中流动,拟用空气介质进行实验。已知空气黏度V空气=15×10-6m2/s,烟气运动黏度v烟气=60×10-6m2/s,烟气流速烟气=3m/s,如若实际与模型长度的比尺λL=5,则模型空气的流速应为:
某生产白酒的集体企业,2006年全年销售收入1500万元,销售成本500万元,销售税金及附加400万元,按规定列支各种费用460万元。已知上述成本费用中包括新产品开发费用80万元、粮食白酒广告费支出50万元。该企业当年应纳企业所得税()万元。
下列各项中,通常情况下,属于盈余公积金用途的有()。
下列项目中,表述不正确的是()。
有些学生虽然知道道德规范,也愿意遵守,但却受个人欲望的支配,不能抗拒诱惑因素,结果干出了违反道德规范的事。其主要原因是这些学生()
设计数据库概念模型最著名、最实用的方法是P.P.S.Chen于1976年提出的什么方法?
在SQL的SELECT语句中,用于实现选择运算的是
最新回复
(
0
)