首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2, β2=t1α2+t2α3,…, βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2, β2=t1α2+t2α3,…, βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
admin
2020-03-16
57
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,β
1
=t
1
α
1
+t
2
α
2
, β
2
=t
1
α
2
+t
2
α
3
,…, β
s
=t
1
α
s
+t
2
α
1
,其中t
1
,t
2
为实常数。试问t
1
,t
2
满足什么条件时,β
1
,β
2
,…,β
s
也为Ax=0的一个基础解系。
选项
答案
因为β
i
(i=1,2,…,s)是α
1
,α
2
,…,α
s
的线性组合,且α
1
,α
2
,…,α
s
是Ax=0的解,所以根据齐次线性方程组解的性质知β
1
(i=1,2,…,s)均为Ax=0的解。 从α
1
,α
2
,…,α
s
是Ax=0的基础解系知s=n—r(A)。 以下分析β
1
,β
2
,…,β
s
线性无关的条件。 设k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0,即 (t
1
k
1
+t
2
k
s
)α
1
+(t
2
k
1
+t
2
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
3
+…+(t
2
k
s—1
+t
1
k
s
)α
s
=0, 由于α
1
,α
2
,…,α
s
线性无关,所以 [*] 又因系数矩阵的行列式 [*]=t
1
s
+(一1)
s+1
+t
2
s
, 当t
1
s
+(一1)
s+1
+t
2
s
≠0时,方程组(*)只有零解k
1
=k
2
=…=k
s
=0。因此当s为偶数且t
1
≠±t
2
,或当s为奇数且t
1
≠一t
2
时,β
1
,β
2
,…,β
s
线性无关,即为Ax=0的一个基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/2KA4777K
0
考研数学二
相关试题推荐
[2005年]设函数f(x)连续,且f(0)≠0,求极限
[20l8年]将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值.
[2015年]已知函数f(x,y)满足f″xy(x,y)=2(y+1)ex,f′x(x,0)=(x+1)ex,f(0,y)=y2+2y,求f(x,y)的极值.
[2014年]设函数f(x)具有二阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上().
(1999年)设矩阵A=矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵,求矩阵X.
设线性方程组与方程(2):x1+2x2+x3=a一1有公共解,求a的值及所有公共解。
已知三阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x。计算行列式|A+E|。
已知三阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x。记p=(x,Ax,A2x)。求三阶矩阵B,使A=PBP-1;
设二元函数计算二重积分,其中D={(x,y)||x|+|y|≤2}。[img][/img]
随机试题
TheNorwegianNobelCommitteehasdecidedto【21】theNobelPeacePrizefor1998toJohnHumeandDavidTrimblefortheirefforts
有害动物及动物产品生物安全处理措施不正确的是()。
结核性心包炎初期最关键的治疗是()
对于无电源驱动的医疗器械的安全性主要考虑()。
肿瘤的促癌因素不包括()
张女士,临产8h,宫口开大5cm,2h后宫口开大仍无进展,应考虑
经济学对城市规划的贡献,下面()说法最完整、准确。
下列关于功能指数法中功能价值分析的表述中,不正确的是()。
“这件事说明一个道理:细节往往决定成败”不是条件复句。()
ImaginethataBritishmarketingfirmisdoingresearchinyourcountry.Youhaveagreedtoparticipateinatelephoneinterview
最新回复
(
0
)