首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2, β2=t1α2+t2α3,…, βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2, β2=t1α2+t2α3,…, βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
admin
2020-03-16
83
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,β
1
=t
1
α
1
+t
2
α
2
, β
2
=t
1
α
2
+t
2
α
3
,…, β
s
=t
1
α
s
+t
2
α
1
,其中t
1
,t
2
为实常数。试问t
1
,t
2
满足什么条件时,β
1
,β
2
,…,β
s
也为Ax=0的一个基础解系。
选项
答案
因为β
i
(i=1,2,…,s)是α
1
,α
2
,…,α
s
的线性组合,且α
1
,α
2
,…,α
s
是Ax=0的解,所以根据齐次线性方程组解的性质知β
1
(i=1,2,…,s)均为Ax=0的解。 从α
1
,α
2
,…,α
s
是Ax=0的基础解系知s=n—r(A)。 以下分析β
1
,β
2
,…,β
s
线性无关的条件。 设k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0,即 (t
1
k
1
+t
2
k
s
)α
1
+(t
2
k
1
+t
2
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
3
+…+(t
2
k
s—1
+t
1
k
s
)α
s
=0, 由于α
1
,α
2
,…,α
s
线性无关,所以 [*] 又因系数矩阵的行列式 [*]=t
1
s
+(一1)
s+1
+t
2
s
, 当t
1
s
+(一1)
s+1
+t
2
s
≠0时,方程组(*)只有零解k
1
=k
2
=…=k
s
=0。因此当s为偶数且t
1
≠±t
2
,或当s为奇数且t
1
≠一t
2
时,β
1
,β
2
,…,β
s
线性无关,即为Ax=0的一个基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/2KA4777K
0
考研数学二
相关试题推荐
[2015年]设函数f(x)连续,φ(x)=∫0xxf(t)dt,若φ(1)=1,φ′(1)=5,则f(1)=__________.
[2010年]求函数u=xy+2yz在约束条件x2+y2+z2=10下的最大值和最小值.
[2002年]考虑二元函数f(x,y)在点(x0,y0)处下面四条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y
[2007年]曲线y=1/x+ln(1+ex)渐近线的条数为().
[2013年]设函数f(x)=若反常积分∫1+∞f(x)dx收敛,则().
(03年)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导.且f’(x)>0.若极限存在.证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2一a2
(99年)设f(x)是区间[0,+∞)上单调减少且非负的连续函数,an==∫1nf(x)dx(n=1,2,…),证明数列{an}的极限存在.
(94年)求微分方程y"+a2y=sinx的通解,其中常数a>0.
设A=E为3阶单位矩阵.(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
设A=E一ξξT,ξ是非零列向量,证明:(1)A2=A的充要条件是ξTξ=1;(2)当ξTξ=1时,A不可逆.
随机试题
阅读材料并回答问题:如何以更好的质量实现经济社会的发展,是我们面临的也是必须要解决好的重大问题。在未来的发展中,资源环境对经济发展已构成严重制约,城乡之间、区域之间、经济与社会之间发展不平衡的矛盾趋于突出,资源相对短期、生态环境脆弱、环境容量不足
mRNA剪接过程中被去除的部分叫做
某猪场2岁种公猪,精神沉郁,步态强拘,拱背,腰部触诊敏感,常做排尿姿势。尿检可见红细胞、白细胞、盐类结晶、肾上皮细胞,该病可能的诊断是()
A.桂枝茯苓丸B.香棱丸C.启宫丸D.开郁种玉汤E.开郁二陈汤
甲河是多国河流,乙河是国际河流。根据国际法相关规则,下列哪些选项是正确的?(2011—卷一—74,多)
根据《建筑工程施工质量验收统一标准》GB50300—2013,建筑工程质量验收的最小单元是()。
根据《中华人民共和国村民委员会组织法》,村务监督委员会成员的产生方式是()。
案例下面是某求助者的WAIS-RC测验结果:根据以上测验得分,可以判断该求助者()
Manythingsmakepeoplethinkartistsareweird.Buttheweirdestmaybethis:artists’onlyjobistoexploreemotions,andyet
Yearsaftertheeconomicrecessionwitnessed_________businessrecoverythroughoutthewholenation.
最新回复
(
0
)