首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞]连续,且∫01f(x)dx 证明至少存在一点ξ∈(0,+∞),使得f(ξ)+ξ=0。
设f(x)在[0,+∞]连续,且∫01f(x)dx 证明至少存在一点ξ∈(0,+∞),使得f(ξ)+ξ=0。
admin
2020-03-16
43
问题
设f(x)在[0,+∞]连续,且∫
0
1
f(x)dx
证明至少存在一点ξ∈(0,+∞),使得f(ξ)+ξ=0。
选项
答案
作函数F(x)=f(x)+x,有 ∫
0
1
F(x)dx=∫
0
1
[f(x)+x]dx=∫
0
1
f(x)dx+[*]<0。 所以由积分中值定理,存在a∈[0,1],使 ∫
0
1
F(x)dx=(1一0)F(a)<0,即F(a)<0。 又因为[*] 所以,由极限的保号性,存在b>a,使[*],即F(b)>0。 因此,由介值定理,至少存在一点ξ∈[a,b] [*] (0,+∞),使F(ξ)=0,即f(ξ)+ξ=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/6B84777K
0
考研数学二
相关试题推荐
求极限:
设连续函数f(x)满足:∫01[f(x)+xf(xt)]dt与x无关,求f(x).
求下列二重积分:(Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1;(Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1;(Ⅲ)I=ydxdy,其中D由直线z=-2,y=0,y=2及曲线x=所围成.
设二次型f(x1,x2,x3)=3x12+3x22+5x32+4x1x3—4x2x3。求正交矩阵P,作变换x=Py将二次型化为标准形。
设三阶实对称矩阵A的各行元素之和都为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次线性方程组AX=0的解.求A及[A一(3/2)E]6.
[2009年]计算二重积分(x—y)dxdy,其中D={(x,y)∣(x一1)2+(y一1)2≤2,y≥x).
设f(x)=∫—1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积。
令f(χ)=χ-[χ],求极限
设函数f(x)在闭区间[0,1]上可微.对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明:在(0,1)内有且仅有一个x,使得f(x)=x.
设n阶(n≥3)矩阵A的主对角元均为1,其余元素均为a,且方程组AX=0只有一个非零解组成基础解系,则a=____________.
随机试题
明显与心理因素相关的躯体疾病是
简述工伤保险制度的作用。
DuringtheChristmasshoppingrushinLondon,theinterestingstorywasreportedofatramp(流浪者)who,apparentlythoughnofaul
疑为宫外孕破裂,最常用的辅助检查方法是
原发性痛经的临床表现不包括
财务报表层次的可接受审计风险与认定层次的可接受审计风险之间应满足()。
《××广播局关于向××县土地局申请划拨建设电视转播台用地的请示》,该标题主要的错误是()。
国家实行()制度:中国公民凡遵守宪法和法律,热爱教育事业,具有良好的思想品德,具备本法规定的学历或者经国家教师资格考试合格,有教育教学能力,经认定合格的,可以取得教师资格。
审计监督属于()。
甘蓝比菠菜更有营养,但是,因为绿芥蓝比莴笋更有营养,所以甘蓝比莴笋更有营养。下列各项,作为新的前提分别加入到题干的前提中,都能使题干的推理成立,除了:
最新回复
(
0
)