首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设z=z(u,v)具有二阶连续偏导数,且z=z(x一2y,x+3y)满足求z=z(u,v)的一般表达式.
设z=z(u,v)具有二阶连续偏导数,且z=z(x一2y,x+3y)满足求z=z(u,v)的一般表达式.
admin
2015-08-17
35
问题
设z=z(u,v)具有二阶连续偏导数,且z=z(x一2y,x+3y)满足
求z=z(u,v)的一般表达式.
选项
答案
以z=z(u,v),u=x一2y,v=x+3y代入式①,得到z(u,v)应该满足的微分方程,也许这个方程能用常微分方程的办法解之.[*]其中ψ(u)为具有连续导数的u的任意函数,φ(v)为具有二阶连续导数的v的任意函数,其中u=x一2y,v=x+3y.
解析
转载请注明原文地址:https://kaotiyun.com/show/6Qw4777K
0
考研数学一
相关试题推荐
设f(x)在x0处n阶可导,且f(m)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n>2),证明:当n为奇数时,(x,f(x0))为拐点.
设y=y(x)是区间(一π,π)内过的光滑曲线,当一π<π<0时,曲线上任一点处的法线都过原点,当0≤x<π时,函数y(x)满足y’’+y+z=0.求函数y(x)的表达式.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设A为n阶矩阵,且A2-2A-8E=O.证明:r(4E-A)+r(2E+A)=n.
已知A是m×n矩阵,m<n.证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
设f(x)在(x0-δ,x0+δ)有n阶连续导数,且f(k)(0)=0,k=2,3,…,n-1;f(n)(x0)≠0.当0<|h|<δ时,f(x0+h)=f(x0)=hf’(x0+θh),(0<θ<1).求证:
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.(1)证明:=n:(2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设3阶矩阵A有3个特征向量η1=(1,2,2)T,η2=(2,-2,1)T,η3=(-2,-1,2)T,它们的特征值依次为1,2,3,求A.
求微分方程y〞+4y′+4y=eaχ的通解.
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2一a3,向量b=a1+a2+a3+a4,求方程组Ax=b的通解。
随机试题
表示测验结果跨时间的一致性的指标是
双侧瞳孔缩小提示
刘某在公路上超速行驶,将正常行走的行人王某撞倒,使其重伤,刘某四顾无人,遂将其抱上车,置于郊外偏僻之地,而后扬长而去,以致王某得不到及时救助失血过多而死亡,刘某的行为如何认定?
估价机构应和委估者签订估价合同书,明确双方的权利、义务,以保证双方合作顺利,减少争议,同时也以协议形式规定了估价师的任务和估价时限。()
某工程项目业主与监理单位及承包商分别签订了施工阶段监理合同和工程施工合同。由于工期紧张,在设计单位仅交付地下室的施工图时,业主要求承包商进场施工,同时向监理单位提出对设计图纸质量把关的要求。(一)监理单位为满足业主要求,由项目土建监理工程师向业主直
公有制的实现形式是指公有制经济在其运行过程中采取的()。
哈尔滨人都是北方人,有些哈尔滨人不是工人。以上命题为真,则以下哪一项肯定为真?
设a>1,则在[0,a]上方程根的个数为[].
SelectCase结构运行时首先计算()。
Ifyoudidn’tknowanybetter,youmightthinkthatStar,Snuppy,CCandANDiwerejustabunchofinterestingnames.You’donly
最新回复
(
0
)