首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组(1)与方程(2)x1+5x3=0,则(1)与(2)的公共解是___________。
已知方程组(1)与方程(2)x1+5x3=0,则(1)与(2)的公共解是___________。
admin
2019-01-19
87
问题
已知方程组(1)
与方程(2)x
1
+5x
3
=0,则(1)与(2)的公共解是___________。
选项
答案
k(一5,3,1)
T
,k为任意常数
解析
将方程组(1)和方程(2)联立,得到方程组
该方程组的解就是两者的公共解。对其系数矩阵作初等行变换可得
A=
由于A的秩为2,所以自由变量有一个,令自由变量x
3
=1,代入可得x
2
=3,x
1
=一5,所以新方程组的基础解系为η=(一5,3,1)
T
。因此(1)和(2)的公共解为k(一5,3,1)
T
,k为任意常数。
转载请注明原文地址:https://kaotiyun.com/show/6mP4777K
0
考研数学三
相关试题推荐
设A是n×m矩阵,B是m×n矩阵,且m>n,若AB=E,其中E是n阶单位矩阵,则必有
设(X,Y)的概率分布为已知Cov(X,Y)=一,其中F(x,y)表示X与Y的联合分布函数.求常数a,b,c的值.
设A是n阶反对称矩阵.(1)证明:对任何n维列向量α,恒有αTAα=0.(2)证明:对任何非零常数c,矩阵A+cE恒可逆.
已知α1=(1,1,0)T,α2=(1,3,一1)T,α3=(2,4,3)T,α4=(1,一1,5)T,A是3阶矩阵,满足Aα1=α2,Aα2=α3,Aα3=α4,求Aα4.
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(一1,一1,1,a)T,α3=(2,a,一3,一5)T,α4=(1,一1,a,5)T与齐次方程组Ax=0的基础解系等价,求Ax=0的
已知α1,α2,α3,α4是3维列向量,矩阵A=[α1,α2,2α3—α4+α2],B=[α3,α2,α1],C=[α1+2α2,2α2+3α4,α4+3α1],若|B|=—5,|C|=40,则|A|=__________.
设A、B都是n阶实对称矩阵,证明:存在正交矩阵P,使得P—1AP=B的充分必要条件是A与B有相同的特征多项式.
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值,证明:A与B有相同的特征向量.B相似于对角矩阵.
已知A相似于B,即存在可逆阵P,使得P—1AP=B.求证:存在可逆阵Q,使得Q—1AQ=B的充分必要条件是存在与A可交换的可逆阵C,使得Q=CP.
已知二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2—2x1x3+4x2x3.当λ满足什么条件时f(x1,x2,x3)正定?
随机试题
[*]
患儿,男,2岁。主因其父母发现其瞳孔区发白1个月。眼部检查:视力检查不配合;左眼角膜清,前房深浅正常,瞳孔大小正常;对光反射存在,晶状体成灰白色浑浊,眼底不能窥清。右眼前节未见明显异常,晶状体未见明显浑浊,眼压Tn。首先考虑的诊断为
异常组织细胞的过氧化酶反应呈
A、湖南、湖北、贵州、云南B、江西、湖南、广西C、湖北D、湖南、贵州、四川、广西E、吉林、黑龙江朱砂的主产地是
下列关于城镇体系规划或区域规划中城镇发展条件评价的表述,错误的是()
由总包单位或安装单位采购的设备,在采购前要向( )提交设备采购方案,经审查同意后方可实施。
“剪切”按钮的快捷键是Ctrl+X。 ( )。
小潘今年28岁,和女友相恋4年,两人计划今年买房,国庆期间结婚,待新房装修完毕后,年底即可搬入。他们经过多方对比,目前认为有两套房子比较合意。其中一套(甲)位于二环路附近,面积87平方米,价格9000元/平方米,可以办理两成首付,利用公积金贷款;另外一套(
申请期货公司首席风险官的任职资格,应当具备的条件有()。
《幼儿园工作规程》规定,幼儿户外活动时间在正常情况下不得多于2小时。()
最新回复
(
0
)