首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
admin
2019-03-14
92
问题
设φ
1
(x),φ
2
(x),φ
3
(x)为二阶非齐次线性方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
选项
A、C
1
[φ
1
(x)+φ
2
(x)]+C
2
φ
3
(x)
B、C
1
[φ
1
(x)-φ
2
(x)]+C
2
φ
3
(x)
C、C
1
[φ
1
(x)+φ
2
(x)]+C
2
[φ
1
(x)-φ
3
(x)]
D、C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
1
+C
2
+C
3
=1
答案
D
解析
因为φ
1
(x),φ
2
(x),φ
3
(x)为方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,
所以φ
1
(x)-φ
3
(x),φ
2
(x)-φ
3
(x)为方程y"+a
1
(x)y’+a
2
(x)y=0的两个线性无关解,
于是方程y"+a
1
(x)y’+a
2
(x)y=f(x)的通解为
C
1
[φ
1
(x)-φ
3
(x)]+C
2
[φ
2
(x)-φ
3
(x)]+φ
3
(x)
即C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
3
=1-C
1
-C
2
或C
1
+C
2
+C
3
=1,选(D).
转载请注明原文地址:https://kaotiyun.com/show/9Oj4777K
0
考研数学二
相关试题推荐
已知y1*=χeχ+e2χ,y2*=χeχ+eχ-χ,y3*=χeχ+e2χ-e-χ是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
设f(χ)=求f(χ)的不定积分∫f(χ)dχ.
设A,B都是n阶矩阵,并且A是可逆矩阵.证明:矩阵方程AX=B和XA=B的解相同AB=BA.
设a,b,c为实数,求证:曲线y=eχ与y=aχ2+bχ+c的交点不超过三个.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
设齐次方程组(Ⅰ)有一个基础解系β=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
设实方阵A=(aij)4×4满足:(1)aij=Aij(i,j=1,2,3,4,其中Aij为aij的代数余子式);(2)a11≠0,求|A|.
若曲线y=x2+ax+b和2y=一1+xy3在点(1,一1)处相切,其中a,b是常数,则
函数f(x)=的无穷间断点的个数为
随机试题
某男,30岁,近日来出现小溲频急,茎中热痛,尿黄而浊,尿终有白浊滴出,伴会阴,睾丸部明显胀痛不适。肛诊:前列腺饱满,压痛(++),质不硬。舌红苔黄腻,脉滑数,诊为前列腺炎,治宜
建筑工程一切险的投保人应在合同中做出规定,被保险人和受益人不包括()。
在风险对策研究中应将规避防范风险措施所付出的代价与该风险可能造成的损失进行权衡,旨在寻求以最少的费用获取最大的风险收益。上述情景描述的是风险研究的()要点。
通过起升机构的升降运动、小车运行机构和大车运行机构的水平运动,在矩形三维空间内完成对物料的运作业的起重机是()。
(),即在贷款期限内每月只还贷款利息,贷款到期时一次性归还贷款本金,此种方式一般适用于期限在1年以内(含1年)的贷款。
利己和利他相结合的集体主义,是利益主体处理各种利益关系的道德基础,也是培养青年利他行为必须坚持的道德原则.因为集体主义本身就会有利他性的自主意愿、行为方式和客观结果。与这句话所述原则不相悖的观念是()。
中国优秀人才大都在政府,而美国是在企业,你怎么看?
既属于主物权,又属于不动产物权类型的是()。
设f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=1,证明必存在ξ,η∈(a,b),使得eη-ξ[f(η)+f’(η)]=1.
--Whyryeyousoangry?--I’veneverseen______personbefore.
最新回复
(
0
)