首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
admin
2019-03-14
62
问题
设φ
1
(x),φ
2
(x),φ
3
(x)为二阶非齐次线性方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
选项
A、C
1
[φ
1
(x)+φ
2
(x)]+C
2
φ
3
(x)
B、C
1
[φ
1
(x)-φ
2
(x)]+C
2
φ
3
(x)
C、C
1
[φ
1
(x)+φ
2
(x)]+C
2
[φ
1
(x)-φ
3
(x)]
D、C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
1
+C
2
+C
3
=1
答案
D
解析
因为φ
1
(x),φ
2
(x),φ
3
(x)为方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,
所以φ
1
(x)-φ
3
(x),φ
2
(x)-φ
3
(x)为方程y"+a
1
(x)y’+a
2
(x)y=0的两个线性无关解,
于是方程y"+a
1
(x)y’+a
2
(x)y=f(x)的通解为
C
1
[φ
1
(x)-φ
3
(x)]+C
2
[φ
2
(x)-φ
3
(x)]+φ
3
(x)
即C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
3
=1-C
1
-C
2
或C
1
+C
2
+C
3
=1,选(D).
转载请注明原文地址:https://kaotiyun.com/show/9Oj4777K
0
考研数学二
相关试题推荐
求下列方程的通解:(Ⅰ)(χ-2)dy=[y+2(χ-2)3]dχ;(Ⅱ)y2dχ=(χ+y2)dy;(Ⅲ)(3y-7χ)dχ+(7y-3χ)dy=0.
已知(χ-1)y〞-χy′+y=0的一个解是y1=χ,又知=eχ-(χ2+χ+1),y*=-χ2-1均是(χ-1)y〞-χy′+y=(χ-1)2的解,则此方程的通解是y=_______.
设函数f(χ)在χ=χ0处存在.f′+(χ0)与f′(χ0),但f′+(χ0)≠f′-(χ0),说明这一事实的几何意义.
设f(χ)在(a,b)二阶可导,χ1,χ2∈(a,b),χ1≠χ2,t∈(0,1),则(Ⅰ)若f〞(χ)>0(χ∈(a,b)),有f[tχ1+(1-t2)χ2]<tf(χ1)+(1-t)f(χ2),(4.6)特别有
已知ξ1=(-3,2,0)T,ξ2=(-1,0,-2)T是方程组的两个解,则此方程组的通解是_______.
求极限
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件的特解。
设z=f(x,y),,其中f,g,φ在其定义域内均可微,求
n阶方阵A有n个互不相同特征值是A与对角矩阵相似的
若曲线y=x2+ax+b和2y=一1+xy3在点(1,一1)处相切,其中a,b是常数,则
随机试题
计量标准的主要计量特性包括哪几个方面?
关于静息电位的叙述,下列哪项是正确的
手术中输血后,发现术野渗血不止和低血压,最可能是出现了哪种输血并发症
肺痨阴虚火旺型常用方剂是
对于肠道传染病起主导作用的预防措施是()
关于缺血性脑卒中急性期的治疗,说法不正确的是
根据代理商是否有权处理法律行为划分,代理商可划分为()。
由于中国代表团没有透彻地理解奥运会的游戏规则,因此在伦敦奥运会上,无论是对赛制赛规的批评建议,还是对裁判执法的质疑,前后几度申诉都没有取得成功。为使上述推理成立,必须补充以下哪一项作为前提?
甲、乙、丙、丁、戊分别住在同一个小区的1、2、3、4、5号房子内。现已知:①甲与乙不是邻居;②乙的房号比丁小;③丙住的房号数是双数;④甲的房号比戊大3号。根据上述条件.丁所住的房号是:
SocialmediapresentschallengetouniversitiesUniversitieshaveanewweaponinthebattletoprotecttheirreputations:thef
最新回复
(
0
)