首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1.又x>x0时,φ(n)(z)>ψ(n)(x).试证:当x>x0时,φ(x)>ψ(x).
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1.又x>x0时,φ(n)(z)>ψ(n)(x).试证:当x>x0时,φ(x)>ψ(x).
admin
2020-03-16
48
问题
若函数φ(x)及ψ(x)是n阶可微的,且φ
(k)
(x
0
)=ψ
(k)
(x
0
),k=0,1,2,…,n一1.又x>x
0
时,φ
(n)
(z)>ψ
(n)
(x).试证:当x>x
0
时,φ(x)>ψ(x).
选项
答案
令u
(n一1)
(x)=φ
(n一1)
(x)一ψ
(n一1)
(x). 在[x
0
,x]上用微分中值定理得 u
(n一1)
(x)一u
(n一1)
(x
0
)=u
(n)
(ξ).(x一x
0
),x
0
<ξ<x. 又由u
(n)
(ξ)>0可知u
(n一1)
(x)一u
(n一1)
(x
0
)>0,且u
(n一1)
(x
0
)=0,所以u
(n一1)
(x)>0,即当x>x
0
时,φ
(n一1)
(x)>ψ
(n一1)
(x). 同理u
(n一2)
(x)=φ
(n一2)
(x)一ψ
(n一2)
(x)>0. 归纳有u
(n一3)
(x)>0,…,u’(x)>0,u(x)>0.于是,当x>x
0
时,φ(x)>ψ(x).
解析
转载请注明原文地址:https://kaotiyun.com/show/BB84777K
0
考研数学二
相关试题推荐
设u=u(x,y)由方程u=φ(u)+∫yxp(t)dt确定,求,其中φ(u)≠1.
设A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,且Aα1=α1一α2+3α3,Aα2=4α1—3α2+5α3,Aα3=0.求矩阵A的特征值和特征向量.
设矩阵A的伴随矩阵且ABA-1=BA-1+3E,求B.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,αn-1,β线性无关.
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记求二元函数f(x,y)=(x2+y2≠0)的最大值,并求最大值点.
设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<ex(x>0).
试求z=f(x,y)=x3+y3-3xy在矩形闭域D={(x,y)|0≤x≤2,-1≤y≤2)上的最大值、最小值.
设f(χ)在[a,b]上二阶可导,且f〞(χ)<0,证明:∫abf(χ)dχ≥[f(a)+f(b)].
计算行列式
令f(χ)=χ-[χ],求极限
随机试题
前列腺增生开放手术治疗术后常见的并发症有
原位溶血见于
关于普罗帕酮的特点,不正确的是
在水与气共存的范围内,当空气中的水汽与水之间达到动态平衡时,这样空气中的水汽叫做达到了饱和,饱和水汽的压强叫做饱和水汽压。
【2009年第1题】如图3-9所示两个矩形截面梁材料相同。在相同y向荷载作用下,两个截面最大正应力的关系为:
()装置是一种非重闭式泄压装置,由进口静压使爆破片受压爆破而泄放出介质,以防止容器或系统内的压力超过预定的安全值。
新增会计科目。科目编码:2201—06科目名称:圣火公司
申请专利的发明创造在申请日以前6个月内,下列各项中,丧失新颖性的是()。
下列不属于订立包价旅游合同时,旅行社应告知旅游者注意事项的是:()。
下列与对联有关的说法错误的是:
最新回复
(
0
)