首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A-aE)(A-bE)=0. (2)r(A-aE)+r(A-bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A-aE)(A-bE)=0. (2)r(A-aE)+r(A-bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
admin
2018-11-23
32
问题
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:
(1)(A-aE)(A-bE)=0.
(2)r(A-aE)+r(A-bE)=n.
(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
选项
答案
不妨设a和b都是A的特征值.(因为如果a不是A的特征值,则3个断言都推出A=bE.如果b不是A的特征值,则3个断言都推出A=aE.) (1)[*](2) 用关于矩阵的秩的性质,由(A-aE)(A-bE)=0.得到: r(A-aE)+r(A-bE)≤n, r(A-aE)+r(A-bE)≥r((A-aE)-(A-bE))=r((b-a)E)=n, 从而r(A-aE)+r(A-bE)=n. (2)[*](3) 记k
a
,k
b
分别是a,b的重数,则有 k
a
≥n-r(A-aE) ① k
b
≥n-r(A-bE) ② 两式相加得n≥k
a
+k
b
≥n-r(A-aE)+n-r(A-bE)=n,于是其中“≥”都为”=”,从而①和②都是等式,并且后k
a
+k
b
=n. k
a
+k
b
=n,说明A的特征值只有a和b,它们都满足(λ-a)(λ-b)=0. ①和②都是等式,说明A相似于对角矩阵. (3)[*](1) A的特征值满足(λ-a)(λ-b)=0,说明A的特征值只有a和b.设B是和A相似的对角矩阵,则它的对角线上的元素都是a或b,于是(B-aE)(B-bE)=0.而(A-aE)(A-aE)相似于(A-bE)(B-bE),因此(A-aE)(A-bE)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/BnM4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上满足|f"(x)|≤2,且f(x)在(a,b)内取到最小值.证明:|f’(a)|+|f’(b)|≤2(b一a).
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
设事件A与B相互独立,已知它们都不发生的概率为0.16,又知A发生B不发生的概率与B发生A不发生的概率相等,则A与B都发生的概率是__________.
若在区间(0,1)上随机地取两个数u,ν,则关于x的一元二次方程x2一2νx+u=0有实根的概率为________.
设A,B都是三阶矩阵,A相似于B,且|E—A|=|E一2A|=|E一3A|=0,则|B-1+2E|=___________.
设函数μ(x,y,z)=1+x2/6+y2/12+z2/18,单位向量则=___________.
设三阶方阵A、B满足A2B—A—B=E,其中E为三阶单位矩阵,若A=,则行列式|B|=______.
设有向量组(I):α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a)T.α4=(4,4,4,4+a)T.问a取何值时,(I)线性相关?当(I)线性相关时,求其一个极大无关组,并将其余向量用该极大无关组线性表出.
(91年)设A是n阶正定阵,E是n阶单位阵,证明A+E的行列式大于1.
设n(n≥2)阶行列式D=,则()
随机试题
未封闭的挑廊,属于()的范围。
企业2003年12月25日销售商品一批,售价80000元,增值税额13600元,销售成本52800元。2004年1月25日因品种不符合要求被退回,货款已退回购货公司。编制冲减销售收入和销售成本的会计分录。
广告费超标( )万元。该企业2004年应缴企业所得税为( )万元。
下列指标计算公式中,不正确的是( )。
以下运输方式中,计划性较强,行驶阻力较小的是()。
众赞歌有什么特点,它对德国音乐发展的意义是什么?
Afarmercarelesslylostanexpensivegoldwatchinthebarnonthefarm,wherehesearchedforeverywherebutinvain.Sohepu
简述布鲁纳对于学生通过发现学习获得学科基本结构可能性的论述。
边际报酬递减规律
To…DepartmentManagersSubject:RequestWhensendinginthismonth’sfigurestoFinance,includeadditionalcostofhiringtempo
最新回复
(
0
)