首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3. 证明α1,α2,α3线性无关;
[2008年] 设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3. 证明α1,α2,α3线性无关;
admin
2019-04-28
73
问题
[2008年] 设A为三阶矩阵,α
1
,α
2
为A的分别属于特征值一1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
.
证明α
1
,α
2
,α
3
线性无关;
选项
答案
证一 用向量组线性无关的定义证明.为利用题设条件Aα
3
=α
2
+α
3
易想到需用A同时左乘定义等式两边. 设 k
1
α
1
+k
2
α
2
+k
3
α
3
=0. ① 由题设,有Aα
1
=一α
1
,Aα
2
=α
2
,Aα
3
=α
2
+α
3
.用A左乘式①两边,得到 k
1
Aα
1
+k
2
Aα
2
+k
3
Aα
3
=一k
1
α
1
+k
2
α
2
+k
3
α
2
+k
3
α
3
=0. ② 本题中隐含了α
1
与α
2
线性无关,因为它们是属于不同特征值的特征向量.下面利用这一点证明k
1
=k
2
=k
3
=0. 由式①一式②得到2k
1
α
1
一k
2
α
2
=0.因α
1
,α
2
为A的属于不同特征值的特征向量,故α
1
,α
2
线性无关.因而k
1
=k
3
=0,将其代入式①得到k
2
α
2
=0,又因α≠0,故k
2
=0.于是α
1
,α
2
,α
3
线性无关. 证二 用反证法证之.假设α
1
,α
2
,α
3
线性相关,由证一知,α
1
与α
2
线性无关,故α
3
可由α
1
,α
2
线性表出,不妨设α
3
=l
1
α
1
+l
2
α
2
,其中l
1
,l
2
不全为零(若l
1
,l
2
同时为零,则α
3
=0, 由Aα
3
=α
2
+α
3
得到α
2
=0,这与α
2
为特征向量矛盾).因Aα
1
=一α
1
,Aα
2
=α
2
,故 Aα
3
=α
2
+α
3
=α
2
+l
1
α
1
+l
2
α
2
. 又 一l
1
α
1
+l
2
α
2
=α
2
+l
1
α
1
+l
2
α
2
, 即 α
2
+2l
1
α
1
=0, 则α
1
与α
2
线性相关.这与α
1
,α
2
线性无关矛盾.故α
1
,α
2
,α
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/GzJ4777K
0
考研数学三
相关试题推荐
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…:αn线性无关,举例说明逆命题不成立.
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=______.
证明:当x>0时,x2>(1+x)ln2(1+x).
判断级数的敛散性.
(1)求常数m,n的值,使得=3.(2)设当x→0时,x-(a+bcosx)sinx为x的5阶无穷小,求a,b.(3)设当x→0时,f(x)=ln(1+t)dt~g(x)=xa(ebx-1),求a,b.
设各零件的质量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总质量超过2510kg的概率是多少?
两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数分布。首先开动其中一台,当其发生故障时停用,而另一台自行开动,试求两台记录仪无故障工作的总时间T的概率密度。
设总体X的概率密度函数为f(x;θ)=其中0<0<1是位置参数,c是常数,X1,X2,…,Xn是取自总体X的简单随机样本,则c=________;θ的矩估计量
设函数f(x)在(-∞,+∞)内连续,其导数的图形如下页图,则f(x)有().
随机试题
-2,1,0,5,26,17,124,37,()
再次择业是从业者提高就业质量、调整发展方向的好机会。()
A.评价抽检B.指定检验C.注册检验D.监督抽检药品监督管理部门在监督检查中,对可疑药品所进行的有针对性的抽查检验属于
机器设备必须具有满足生产需要的综合精度,设备的综合精度可用设备()来衡量。
可转换公司债券发行,在上海证券交易所上网定价发行方式下,()日公布摇号中签率。
基督教地区教会的首领被称为()。
与“揠苗助长"“一曝十寒”相对立的教学原则是()
结合化学知识和生活经验,下列做法不能减少环境污染的是()。
Inspiteoftheincreasing______oftheiropinions,thegroupknewtheyhadtoarriveataconsensussothattheawardcouldbe
求下列三角函数的不定积分。∫sin3xcos2xdx
最新回复
(
0
)