首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3. 证明α1,α2,α3线性无关;
[2008年] 设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3. 证明α1,α2,α3线性无关;
admin
2019-04-28
44
问题
[2008年] 设A为三阶矩阵,α
1
,α
2
为A的分别属于特征值一1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
.
证明α
1
,α
2
,α
3
线性无关;
选项
答案
证一 用向量组线性无关的定义证明.为利用题设条件Aα
3
=α
2
+α
3
易想到需用A同时左乘定义等式两边. 设 k
1
α
1
+k
2
α
2
+k
3
α
3
=0. ① 由题设,有Aα
1
=一α
1
,Aα
2
=α
2
,Aα
3
=α
2
+α
3
.用A左乘式①两边,得到 k
1
Aα
1
+k
2
Aα
2
+k
3
Aα
3
=一k
1
α
1
+k
2
α
2
+k
3
α
2
+k
3
α
3
=0. ② 本题中隐含了α
1
与α
2
线性无关,因为它们是属于不同特征值的特征向量.下面利用这一点证明k
1
=k
2
=k
3
=0. 由式①一式②得到2k
1
α
1
一k
2
α
2
=0.因α
1
,α
2
为A的属于不同特征值的特征向量,故α
1
,α
2
线性无关.因而k
1
=k
3
=0,将其代入式①得到k
2
α
2
=0,又因α≠0,故k
2
=0.于是α
1
,α
2
,α
3
线性无关. 证二 用反证法证之.假设α
1
,α
2
,α
3
线性相关,由证一知,α
1
与α
2
线性无关,故α
3
可由α
1
,α
2
线性表出,不妨设α
3
=l
1
α
1
+l
2
α
2
,其中l
1
,l
2
不全为零(若l
1
,l
2
同时为零,则α
3
=0, 由Aα
3
=α
2
+α
3
得到α
2
=0,这与α
2
为特征向量矛盾).因Aα
1
=一α
1
,Aα
2
=α
2
,故 Aα
3
=α
2
+α
3
=α
2
+l
1
α
1
+l
2
α
2
. 又 一l
1
α
1
+l
2
α
2
=α
2
+l
1
α
1
+l
2
α
2
, 即 α
2
+2l
1
α
1
=0, 则α
1
与α
2
线性相关.这与α
1
,α
2
线性无关矛盾.故α
1
,α
2
,α
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/GzJ4777K
0
考研数学三
相关试题推荐
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…:αn线性无关,举例说明逆命题不成立.
设A是m×n阶矩阵,若ATA=O,证明:A=O.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
已知A=有三个线性无关的特征向量,则a=______.
设A,B为n阶对称矩阵,下列结论不正确的是().
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)-f(y)|≤M|x-y|k.(1)证明:当k>0时,f(x)在[a,b]上连续;(2)证明:当k>1时,f(x)≡常数.
设总体X的概率密度为其中参数θ(0<θ<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。求参数θ的矩估计量。
设由流水线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品。销售每件合格品获利,销售每件不合格品亏损。已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个零
设A为n阶矩阵,证明:r(A*)=,其中n≥2.
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.(1)求旋转曲面的方程;(2)求曲面S介于平面z=0与z=1之间的体积.
随机试题
物资编码的原则是:编码应尽量简短,且具有唯一性、可扩充性和()。
刺四逢疗法,常用于治疗
下列药物属于真菌的是
下列黄酮类化合物水溶性最大的是()
A.量反应B.停药反应C.副作用D.变态反应E.质反应反跳反应
在发生火灾时,为了有效地避免烟毒对人员的伤害,需要了解火灾烟气的蔓延途径。据有关研究,建筑火灾烟气蔓延的途径有()
关于会计电算化环境下的结账和编制会计报表流程的特点,下列表述中正确的有()。
动作技能根据所涉及的骨骼、肌肉以及动作幅度大小,可分为精细性动作技能与()。
经过几十年的发展,数字经济已在经济发展中起到引领和主导作用,但由于传统的经济统计方法不能全面反映信息技术的作用,有学者一直在质疑数字经济的巨大影响。理解信息技术对经济社会的影响,需要承认技术进步不是以线性方式而是以指数方式发展的历史事实。石器时代经历了数万
A、Financialproblems.B、Campusfacilities.C、Academicsystems.D、Studyingtechniques.A
最新回复
(
0
)