首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数y=f(x)对一切的x满足xf’’(x)+3x[f’(x)]2=1一e—x,若f’(x0)=0(x0≠0),则( )
已知函数y=f(x)对一切的x满足xf’’(x)+3x[f’(x)]2=1一e—x,若f’(x0)=0(x0≠0),则( )
admin
2018-12-19
38
问题
已知函数y=f(x)对一切的x满足xf’’(x)+3x[f’(x)]
2
=1一e
—x
,若f’(x
0
)=0(x
0
≠0),则( )
选项
A、f(x
0
)是f(x)的极大值。
B、f(x
0
)是f(x)的极小值。
C、(x
0
,f(x
0
))是曲线y=f(x)的拐点。
D、f(x
0
)不是f(x)的极值,(x
0
,f(x
0
))也不是曲线y=f(x)的拐点。
答案
B
解析
由f’(x
0
)=0知,x=x
0
是y=f(x)的驻点。将x=x
0
代入方程,得x
0
f(x
0
)+3x
0
[f’(x
0
)]
2
=1一e
x
0
,即得f’’(x
0
)=
>0(分x
0
>0与x
0
<0讨论),由极值的第二判定定理可知,f(x)在x
0
处取得极小值。故选B。
转载请注明原文地址:https://kaotiyun.com/show/Hjj4777K
0
考研数学二
相关试题推荐
设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫axg(x)dt,x∈(a,6),∫abf(t)dt=∫abg(t)dt证明∫abxf(x)dx≤∫abxg(x)dx.
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得
设A是三阶实对称矩阵,存在可逆矩阵P=,使得P-1AP=,又α=且A*=μα.求|A*+3E|.
(2010年)设已知线性方程组Aχ=b存在2个不同的解.(Ⅰ)求λ,a;(Ⅱ)求方程组Aχ=b的通解.
(2001年)已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是AX=0的一个基础解系.
(1998年)计算积分
求不定积分.
已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2一α4,α3+α4,α2+α3,2α1+α2+α3的秩是()
设二阶常系数线性微分方程,y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
求χ=2χ+y在区域D:χ2+≤1上的最大值与最小值.
随机试题
目前常用的头孢菌素中抗铜绿假单胞菌作用最强的是
下列关于权责发生制的表述中,不正确的是()。
材料四:阅读下面的短文。完成76—80题。在地面上,行走是指用双腿克服地球引力,轮流迈步,从一处地面走向另一处地面。但在太空轨道飞行的失重环境中.失重将行走的概念完全搞乱了。在航天器密封座舱中行走,只要用脚、手或身体任何部位触一下舱壁或任何固定的
党对公安工作的绝对领导是我国公安工作的:
“三个代表”这一科学理论在建设中国特色社会主义的思想路线、发展道路、发展阶段和发展战略、根本任务、发展动力、依靠力量、国际战略、领导力量和根本目的等重大问题上取得了丰硕成果,用一系列紧密联系、相互贯通的新思想、新观点、新论断,创造性地回答了()。
加利福尼亚的消费者在寻求个人贷款时可借助的银行比美国其他州少,银行间竞争的缺乏解释了为什么加利福尼亚的个人贷款利率高于美国其他地区。以下哪项如果为真,最能削弱上述结论?
【B1】【B18】
Whatisthemostimportantfunctionoftrees?
In1959,Hawaiibecamethefiftiethstateintheunion(1)_____CongresssofarawayinWashingtonD.C,howdoHawaiiansgetthe
Whichofthefollowingstatementsistrueaccordingtothetext?Whatistheauthor’sattitudetowardsthereconstructionofTh
最新回复
(
0
)