首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设平均收益函数和总成本函数分别为 AR=a-bQ, C=Q3-7Q2+100Q+50, 其中常数a>0,b>0待定.已知当边际收益MR=67,且需求价格弹性时总利润最大.求总利润最大时的产量,并确定a,b的值.
设平均收益函数和总成本函数分别为 AR=a-bQ, C=Q3-7Q2+100Q+50, 其中常数a>0,b>0待定.已知当边际收益MR=67,且需求价格弹性时总利润最大.求总利润最大时的产量,并确定a,b的值.
admin
2019-02-20
91
问题
设平均收益函数和总成本函数分别为
AR=a-bQ, C=
Q
3
-7Q
2
+100Q+50,
其中常数a>0,b>0待定.已知当边际收益MR=67,且需求价格弹性
时总利润最大.求总利润最大时的产量,并确定a,b的值.
选项
答案
总利润函数 L(Q)=R-C=Q·AR-C=[*]Q
3
+(7-b)Q
2
+(n-100)Q-50, 从而使总利润最大的产量Q及相应的a,b应满足L’(Q)=0,MR=67及[*]即 [*] 解得a=111,Q=3或11,[*]或2. 由此得到两组可能的解:a=111,[*]Q=3与a=111,b=2,Q=11. 把第一组数据中的a,b代入得总利润函数 [*] 虽然L’(3)=0,L"(3)<0,即L(3)确实是L(x)的最大值,但L(3)<0,不符合实际,故应舍去. 把第二组数据中的a,b代入得总利润函数 L=[*]Q
3
+5Q
2
+11Q一50, 也有L’(11)=0,L"(11)<0,即[*]是L(x)的最大值,故a=111,b=2是所求常数的值,使利润最大的产量Q=11.
解析
平均收益函数AR=a-bQ其实就是价格P与销售量Q的关系式,由此可得总收益函数
R=Q·AR=aQ-bQ
2
,
需求函数(它是P=a-bQ的反函数)
进而可得需求价格弹性
转载请注明原文地址:https://kaotiyun.com/show/IFP4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(b)=∫abf(x)dx,试证:存在一点ξ∈(a,b),使得f"(ξ)=0.
已知3阶矩阵A与3维列向量α,若α,Aα,A2α线性无关,且A3α=3Aα一2A2α,试求矩阵A的特征值与特征向量.
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=一1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=一1的特征向量,证明:向量组α,β线性无关.
设A、B均为n阶实对称矩阵,且A的特征值全大于a,B的特征值全大于b,其中a,b均为实常数,证明:矩阵A+B的特征值全大于a+b.
设A、B都是m×n矩阵,证明:r(A+B)≤r(A)+r(B).
设λ1,λ2是n阶实对称矩阵A的两个不同的特征值,α是A的对应于特征值λ1的一个单位特征向量,求矩阵B=A—λ1ααT的两个特征值.
设有任意两个n维向量组α1,α2,...,αm和β1,β2,...,βm,若存在两组不全为零的数λ1,λ2,...,λm,k1,k2,...,km,使(λ1+k1)α+λ2+k2)α2+...+(λm+km)αm+=(λ1-k1)β1+(λ2-k2)
当a取下列哪个值时,函数f(x)=2x3一9x2+12x—a恰好有两个不同的零点?()
用过去的铸造方法,零件强度的标准差是1.6kg/mm2.为了降低成本,改变了铸造方法,测得用新方法铸出的零件强度如下:52,53,53,54,54,54,54,51,52.设零件强度服从正态分布,取显著性水平α=0.05,问改变方法后零件强度的方差是否发
设某商品的需求量D和供给量S各自对价格P的函数为D(P)=,S(P)=6P,且P是时间t的函数,并满足方程=k[D(P)一s(P)],其中a,b,k为正的常数.求:(Ⅰ)需求量与供给量相等时的均衡价格P3;(Ⅱ)当t=0,P=1时的价格函数P(t);(Ⅲ
随机试题
社会主义民主根本区别于资本主义民主,就在于它由人民直接行使国家权力。
先学习的材料对识记和回忆后学习的材料的干扰称
严重腹型紫癜患儿应当给予
多发性骨髓瘤
A.血虚发热B.瘀血发热C.气虚发热D.肝郁发热E.阴虚发热午后或夜间发热,伴身体有固定痛处或肿块,舌有瘀点瘀斑,内伤发热证属
不属于中药性能的内容是()。
公司指定的负责信息披露事务的授权代表,不必包括董事会秘书。()
核电站利用核能进行发电,其所使用的核燃料是()。
若有定义:“inta[2][3];”则对a数组的第i行第j列元素的正确引用为()。
A、 B、 C、 A
最新回复
(
0
)