设f(2)=,f’(2)=0,∫02f(x)dx=1,求∫01x2f’’(2x)dx.

admin2020-03-10  35

问题 设f(2)=,f’(2)=0,∫02f(x)dx=1,求∫01x2f’’(2x)dx.

选项

答案01x2f’’(2x)dx=[*]∫01(2x)2f’’(2x)d(2x)[*]∫02t2f’’(t)dt =[*]∫02t2d[f’(t)]=[*][t2f’(t)|02-2∫02tf’(t)dt] =[*]∫02tdf(t)=[*][tf(t)|02-∫02f(t)dt] =[*][2f(2)-1]=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/IuD4777K
0

随机试题
最新回复(0)