首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). 问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). 问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
admin
2018-08-03
68
问题
设4元齐次线性方程组(Ⅰ)为
,又已知某齐次线性方程组(Ⅱ)的通解为k
1
(0,1,1,0)+k
2
(一1,2,2,1).
问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
有非零公共解. 将(Ⅱ)的通解代入方程组(Ⅰ),则有 [*] 解得k
1
=一k
2
,当k
1
=一k
2
≠0时,则向量 k
1
(0,1,1,0)+k
2
(一1,2,2,1)=k
2
[(0,一1,一1,0)+(一1,2,2,1)]=k
2
(一1,1,1,1)满足方程组(Ⅰ)(显然是(Ⅱ)的解),故方程组(Ⅰ)、(Ⅱ)有非零公共解,所有非零公共解是k(一1,1,1,1)(k是不为0的任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/Iug4777K
0
考研数学一
相关试题推荐
设f(x)在[0,a](a>0)上非负、二阶可导,且f(0)=0,f"(x)>0,为y=f(x),y=0,x=a围成区域的形心,证明:.
下列命题不正确的是().
设a是n维单位列向量,A=E一ααT.证明:r(A)<n.
设A是正交矩阵,且|A|<0.证明:|E+A|=0.
设A,B都是三阶矩阵,A=,且满足(A*)-1B=ABA+2A2z,则B=___________.
设A为n阶矩阵,k为常数,则(kA)*等于().
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设随机变量X服从参数λ=的指数分布,令Y=min(X,2),求随机变量Y的分布函数F(y).
已知正态总体X~N(a,相互独立,其中4个分布参数都未知.设X1,X2,…,Xm和Y1,Y2,…,Yn是分别来自X和Y的简单随机样本,样本均值分别为样本方差相应为,则检验假设H0:a≤b使用t检验的前提条件是
随机试题
阅读《蜀相》,然后回答问题。丞相祠堂何处寻?锦官城外柏森森。映阶碧草自春色,隔叶黄鹂空好音。三顾频烦天下计,两朝开济老臣心。出师未捷身先死,长使英雄泪满襟。说说本诗颔联中的“自”“空”二字的含义。
根据合同所涉及的行政管理领域,行政合同可分为()。
行政组织中各部门之间、各层次之间所构成的权责关系的排列方式是行政组织的()
血虚型之虚劳多见于
根性感觉障碍特点是
婚前保健的重要意义不包括
悬饮结于胁下,胸胁胀满疼痛,咳嗽,转侧则加重,短气,小便不利,干呕,脉沉弦,宜首选何药治疗
以下有关消费者权利的表述,不符合《中华人民共和国消费者权益保护法》规定的是
行政单位和事业单位国有资产管理活动,应当遵循实物管理与()相结合的原则。
请编写函数fun,其功能是:将M行N列的二维数组中的字符数据,按列的顺序依次放到一个字符串中。例如,若二维数组中的数据为WWWWSSSSHHHH则字符串中的内容应是:WSHWSH
最新回复
(
0
)