首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
admin
2019-07-12
60
问题
设A,B,A+B,A
-1
+B
-1
均为n阶可逆矩阵,则(A
-1
+B
-1
)
-1
等于
选项
A、A
-1
+B
-1
.
B、A+B.
C、A(A+B)
-1
B.
D、(A+B)
-1
.
答案
C
解析
因为A,B,A+B均可逆,则有
(A
-1
+B
-1
)
-1
=(EA
-1
+B
-1
E)
-1
=(B
-1
BA
-1
+B
-1
AA
-1
)
-1
=[B
-1
(B+A)A
-1
]
-1
=(A
-1
)
-1
(B+A)
-1
(B
-1
)
-1
=A(A+B)
-1
B.
故应选(C).
注意,一般情况下(A+B)
-1
≠A
-1
+B
-1
,不要与转置的性质相混淆.
转载请注明原文地址:https://kaotiyun.com/show/JkJ4777K
0
考研数学三
相关试题推荐
(2008年)求极限
(2004年)设有以下命题:则以上命题中正确的是()
设A,B为三阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=__________。
(1998年)一商店经销某种商品,每周进货的数量X与顾客对该种商品的需求量Y是相互独立的随机变量,且都服从区间[10,20]上的均匀分布。商店每售出一单位商品可得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利润为500元
设f(x)二阶可导,且f’’(x)>0.证明:当x≠0时,f(x)>x.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足______.
曲线的斜渐近线为______.
设f(x)具有连续导数,且F(x)=∫0x(x2一t2)f’(t)dt,若当x→0时F’(x)与x2为等价无穷小,则f’(0)=___________.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.(1)求a,b的值;(2)利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
设x=rcosθ,y=rsinθ,把下列直角坐标系中的累次积分改写成极坐标系(r,θ)中的累次积分:
随机试题
大叶性肺炎时,病变在肺大叶之间的蔓延是通过何种途径进行的
患者,男,45岁。骤起寒战,高热40℃、大汗,肝区或右上腹痛并伴有厌食,乏力。查体右季肋区呈饱满状态,右下胸及肝区叩击痛,怀疑“细菌性肝脓肿”,分析细菌侵入的主要途径为
A.乙胺嘧啶B.苄青霉素C.特布他林D.红霉素E.甲硝唑用于疟疾病因性预防的首选药是
张某被人民法院判处有期徒刑3年,在判决确定前,张某并没有被羁押,在判决生效后,由哪个机关负责对张某的羁押以及交付执行?()
在设置质量控制点时,可包含()。
沥青混合料的松铺系数应根据试铺试压确定,应随时检查铺筑层(),并铺以使用的沥青混合料总量与面积校验平均厚度。
下列不属于违反用工法造成损失的原因的是()。
我国已经渡过了社会主义初级阶段,进入了新时期。()
美术教学方法中的常识教学法的优点是()。
Arapidmeansoflong-distancetransportationbecameanecessityfortheUnitedStatesassettlementspreadfartherwestward
最新回复
(
0
)