首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
admin
2018-06-15
52
问题
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
选项
答案
对齐次方程组(Ⅰ)ABx=0,(Ⅱ)Bx=0, 如α是(Ⅱ)的解,有Bα=0,那么ABα=0,于是α是(Ⅰ)的解. 如α是(Ⅰ)的解,有ABα=0,因为A是m×n矩阵,秩r(A)=n,所以Ax=0只有零解,从而Bα=0.于是α是(Ⅱ)的解. 因此方程组(Ⅰ)与(Ⅱ)同解.那么s-r(AB)=s-r(B),即r(AB)=r(B). 所以r(B)=r(C).
解析
转载请注明原文地址:https://kaotiyun.com/show/KXg4777K
0
考研数学一
相关试题推荐
已知A是m×n矩阵,r(A)=r<min{m,n},则A中必()
已知A,B是三阶方阵,A≠O,AB=O,证明:B不可逆.
设矩阵A=有三个线性无关特征向量λ=2是A的二重特征值,试求可逆阵P使得P-1AP=A,A是对角阵.
设f(x)=试问当a取何值时,f(x)在点x=0处,①连续,②可导,③一阶导数连续,④二阶导数存在.
设f(x,y)在全平面有连续偏导数,曲线积分∫Lf(x,y)dx+xcosydy在全平面与路径无关,且f(x,y)dx+xcosydy=t2,求f(x,y).
设f(x)=sin(cosx),φ(x)=cos(sinx),则在区间(0,)内()
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵A,使得A—1AP为对角矩阵.
求[φ(x)-t]f(t)dt,其中f(t)为已知的连续函数,φ(x)为已知的可微函数.
设f(x)在x=0的某邻域内连续且具有连续的导数,又设=A>0,试讨论级数是条件收敛,绝对收敛,还是发散?
设f(x)在(-∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)=a(a≠0),试证明对任意x,f’(x)都存在,并求f(x)。
随机试题
根据《治安管理处罚法》的规定,对()淫秽物品的行为,不能给予治安管理处罚。
依据我国《民法通则》的规定,除法律另有规定外,我国民法不适用于()
简述食物与健康的关系。
京巴犬,3岁,患病6月余,体瘦毛焦,食少,久泻不止,粪便稀溏,舌淡苔白,脉细。该病可辨证为()
一阶系统的闭环极点越靠近s平面的原点,其()。
下列关于保险合同的说法中,正确的有()。
(2011年)甲公司为支付货款,向乙公司签发了一张以A银行为承兑人、金额为20万元的银行承兑汇票。A银行在票据承兑栏中进行了签章。乙公司为向丙公司支付租金,将该票据交付丙公司,但未在票据上背书和签章。丙公司因需向丁公司支付工程款,欲将该票据转让给丁公司。丁
行政机关实施行政许可,不得向申请人提出购买指定商品、接受有偿服务等不正当要求。()
Thenormalhumandailycycleofactivityisofsome7-8hours’sleep【C1】______withsome16~17hours’wakefulnessandthatthesleep
Howexerciseaffectsbodyweightisoneofthemoreintriguingandvexingissuesinphysiology.Exerciseburnscalories.nooned
最新回复
(
0
)