首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η1=[-3,2,0]T,η2=[-1,0,-2]T是线性方程组的两个解向量,求方程组的通解,并确定参数a,b,c.
已知η1=[-3,2,0]T,η2=[-1,0,-2]T是线性方程组的两个解向量,求方程组的通解,并确定参数a,b,c.
admin
2021-07-27
52
问题
已知η
1
=[-3,2,0]
T
,η
2
=[-1,0,-2]
T
是线性方程组
的两个解向量,求方程组的通解,并确定参数a,b,c.
选项
答案
对应齐次方程组有解ξ=η
1
-η
2
=[-2,2,2]
T
或[-1,1,1]
T
,故对应齐次方程组的基础解系至少有一个非零向量,故[*]又显然应有r(A)=r([A|b])≥2,从而r(A)=r([A|b])=2,故方程组有通解k[-1,1,1
T
+[-3,2,0]
T
,其中k为任意常数.将η
1
,η
2
代入第一个方程,得-3a+2b=2,-a-2c=2,解得a=-2-2c,b=-2-3c,c为任意常数,可以验证:当a=-2-2c,b=-2-3c,c任意时,r(A)=r([A|b])=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/MTy4777K
0
考研数学二
相关试题推荐
若向量组α,β,γ线性无关,α,β,δ线性相关,则()
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,a33k;f(A)的对角线元素为f(
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t).(1)问当t为何值时,向量组α1,α2,α3线性无关?(2)问当t为何值时,向量组α1,α2,α3线性相关?(3)当α1,α2,α3线性相关时,将α3表示为α1和α2的线
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B—CTA一1C是否为正定矩阵,并证明结论.
用变量代换χ=sint将方程(1-χ2)-4y=0化为y关于t的方程,并求微分方程的通解.
已知β可用α1,α2,α3线性表示,但不可用α1,α2,α3线性表示.证明(1)αa不可用α1,α2,…,αs-1线性表示;(2)αs可用α1,α2,…,αs-1,β线性表示.
设有齐次线性方程组Ax=0和Bx=0,其中A、B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
把二重积分f(χ,y)出dχdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线χ+y=1,χ=1,y=1围成.
随机试题
出入肝门的结构有【】
患者,男,45岁。胃溃疡病史8年,近3个月疼痛加重,失去节律,用多种药物治疗无效。查体:浅表淋巴结无肿大,腹平软,上腹部压痛,可扪及肿块。为确诊病因应首选的检查是
患者,男性,35岁。因股骨干骨折给予持续骨牵引,下列护理不妥的是
下列()是反渗透处理工艺的核心部件。
甲公司为增值税一般纳税人,适用的增值税税率为16%,确认收入的同时结转成本。为促进销售,该公司承诺客户购买6000件产品以上时给予10%的商业折扣。2018年7月份,甲公司发生如下经济业务:(1)10日,向乙公司销售产品8000件,不含税单价
安徽省万亩以上湖泊共有()多个,主要分布于长江与淮河两岸。
多媒体网络应用及实时通信要求网络高速率传输,并且延迟低。下列哪一项技术满足这类应用的要求?
WhatisHelen’smajor?
Cross-CulturalCommunicationMulticulturalismisarealityinNorthAmerica.Itis,therefore,importanttoknowhowtobridgec
WhatkindofcardoesMrs.Hillhave?
最新回复
(
0
)