首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η1=[-3,2,0]T,η2=[-1,0,-2]T是线性方程组的两个解向量,求方程组的通解,并确定参数a,b,c.
已知η1=[-3,2,0]T,η2=[-1,0,-2]T是线性方程组的两个解向量,求方程组的通解,并确定参数a,b,c.
admin
2021-07-27
63
问题
已知η
1
=[-3,2,0]
T
,η
2
=[-1,0,-2]
T
是线性方程组
的两个解向量,求方程组的通解,并确定参数a,b,c.
选项
答案
对应齐次方程组有解ξ=η
1
-η
2
=[-2,2,2]
T
或[-1,1,1]
T
,故对应齐次方程组的基础解系至少有一个非零向量,故[*]又显然应有r(A)=r([A|b])≥2,从而r(A)=r([A|b])=2,故方程组有通解k[-1,1,1
T
+[-3,2,0]
T
,其中k为任意常数.将η
1
,η
2
代入第一个方程,得-3a+2b=2,-a-2c=2,解得a=-2-2c,b=-2-3c,c为任意常数,可以验证:当a=-2-2c,b=-2-3c,c任意时,r(A)=r([A|b])=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/MTy4777K
0
考研数学二
相关试题推荐
求微分方程y"+2y’一3y=e一3x的通解.
设α1=(1,2,3,1)T,α2=(3,4,7,一1)T,α3=(2,6,a,b)T,α4=(0,1,3,a)T,那么a=8是α1,α2,α3,α4线性相关的()
向量组α1,α2,…,αm线性相关的充分条件是【】
A是n×n矩阵,则A相似于对角阵的充分必要条件是()
设A是n×m矩阵,B是m×n矩阵(n<m),且AB=En.证明:B的列向量组线性无关.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B—CTA一1C是否为正定矩阵,并证明结论.
已知β可用α1,α2,α3线性表示,但不可用α1,α2,α3线性表示.证明(1)αa不可用α1,α2,…,αs-1线性表示;(2)αs可用α1,α2,…,αs-1,β线性表示.
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Aχ=0的基础解系.则A的列向量组的极大线性无关组可以是
设微分方程y〞-3y′+ay=-5e-χ的特解形式为Aχe-χ,则其通解为_______.
随机试题
Susan:Wow,Iloverelaxingafteralongdayofwork.Bob:Metoo!【D8】________Susan:Iliketopracticeyoga.Bob:Youdoyoga
A.磷脂酶AB.弹性蛋白酶C.脂肪酶D.激肽释放酶与急性胰腺炎皂化斑的发生有关的是
恶性程度最高的甲状腺癌是
有机质土中,位于塑性图A线以上,且在B线或B线以右的土称为()。
关于加气混凝土墙的说法,正确的是()。
Youcangetoffthebusoneortwostops______andwalktherestofthewaytoworkeverydaysoastotakesomeexercise.
在我国的司法实践中,地方各级人民法院往往以最高人民法院在《公报》中列举的典型案件作为审判的参考,在事实上已经作为一种“样本”来使用,因此有人认为在现代中国判例的作用已与英美法系国家无本质上的区分。试运用法理学的有关知识分析上述观点。
ApproachestoUnderstandingIntelligencesItpaystobesmart,butwearenotallsmartinthesameway.Youmaybeatalent
"Cultureshock"occursasaresultoftotalimmersioninnewculture.It【C1】______to"peoplewhohavebeensuddenlytransplanted
TheU.S.dollarwassupposedtobeattheendofitsrope.Kickingthebucket.Well,maybenot.Thedollarcontinuesto【C1】_____
最新回复
(
0
)