首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,α0≠0,满足Aα0=0,向量组α1,α2满足Aα1=α0,A2α2=α0.证明α0,α1,α2线性无关.
设A为n阶矩阵,α0≠0,满足Aα0=0,向量组α1,α2满足Aα1=α0,A2α2=α0.证明α0,α1,α2线性无关.
admin
2017-08-07
81
问题
设A为n阶矩阵,α
0
≠0,满足Aα
0
=0,向量组α
1
,α
2
满足Aα
1
=α
0
,A
2
α
2
=α
0
.证明α
0
,α
1
,α
2
线性无关.
选项
答案
用定义证明.即要说明当c
1
,c
2
,c
3
满足c
1
α
0
+c
2
α
1
+c
3
α
2
=0时它们一定都是0. 记此式为(1)式,用A乘之,得 c
2
α
0
+c
3
Aα
2
=0(2) 再用A乘(2)得c
3
α
0
=0.由α
0
≠0,得c
3
=0.代入(2)得c
2
=0.再代入(1)得c
1
=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Mzr4777K
0
考研数学一
相关试题推荐
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是().
设f(x)为[0,1]上的单调增加的连续函数,证明
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解的情况下,求出其全部解.
向量组a1,a2,…,am线性无关的充分必要条件是().
设n维向量a=(a,0,…,0,a)T,a>0,E为n阶单位矩阵,矩阵A=E-aaT,B=E+(1/a)aaT,其中A的逆矩阵为B,则a=________.
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是a1=(-1,-1,1)T,a2=(1,-2,-1)T.(Ⅰ)求A的属于特征值3的特征向量;(Ⅱ)求矩阵A.
设函数f(x,y)在D:x2+y2≤1有连续的偏导数,且在L:x2+y2=1上有f(x,y)≡0.证明:f(0,0)=,其中D2:r2≤x2+y2≤1.
设A=,a=(a,1,1)T,已知Aa与a线性相关,则a=_________.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(Ⅰ)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ
随机试题
验收的可交付成果,属于项目范围管理中________过程的输出。
社会研究的选题过程一般从以下几个方面来确定()
下列哪一项不是诊断急性心肌梗死的依据()
“老当益壮,宁移白首之心;穷且益坚,不坠青云之志”写于下列哪个著名楼阁()。
知信行理论模式认为行为的改变有3个关键步骤,按顺序分别为接受知识、改变行为和确立信念。()
近些年,我国取得了一批重大科技创新成果,实现部分领域由“跟随”到“领跑”的跨越。以下说法不正确的是()。
社会主义职业道德的基本要求是()
Ourdailyexistenceisdividedintotwophases,asdistinctasdayandnight.Wecallthemworkandplay.Weworkmanyhoursad
RSA是根据(2)原理得到的公钥加密算法。PGP协议采用RSA和IDEA两种加密算法组成链式加密体系的优点是(3)。POP可以对电子邮件进行认证,认证机制是用MD5算法产生(4)位的报文摘要,发送方用自己的RSA私钥对(5)进行加密,附加在邮件中进行传送。
Wehavetotryeverymeansto_____thecostsoftheproject.
最新回复
(
0
)