首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在P3中,已知α1=(一1,0,2),α2=(0,1,1),α3=(3,一1,0)是P3的一组基,并且Tα1=(一5,0,3),Tα2=(0,-1,6),Tα3=(一5,一1,9).求: (1)线性变换T在基α1,α2,α3下的矩阵. (2)T在基
在P3中,已知α1=(一1,0,2),α2=(0,1,1),α3=(3,一1,0)是P3的一组基,并且Tα1=(一5,0,3),Tα2=(0,-1,6),Tα3=(一5,一1,9).求: (1)线性变换T在基α1,α2,α3下的矩阵. (2)T在基
admin
2020-09-25
77
问题
在P
3
中,已知α
1
=(一1,0,2),α
2
=(0,1,1),α
3
=(3,一1,0)是P
3
的一组基,并且Tα
1
=(一5,0,3),Tα
2
=(0,-1,6),Tα
3
=(一5,一1,9).求:
(1)线性变换T在基α
1
,α
2
,α
3
下的矩阵.
(2)T在基ε
1
=(1,0,0),ε
2
=(0,1,0),ε
3
=(0,0,1)下的矩阵.
选项
答案
(1)设Tα
1
=x
1
α
1
+x
2
α
2
+x
3
α
3
,所以有[*] 解得x
1
=2,x
2
=-1,x
3
=-1,所以Tα
1
=2α
1
一α
2
一α
3
. 同理可得Tα
2
=3α
1
+α
3
,Tα
3
=5α
1
一α
2
. 从而可得T在基α
1
,α
2
,α
3
下的矩阵为[*] (2)设ε
1
=x
1
α
1
+x
2
α
2
+x
3
α
3
,从而有[*] 解得[*] 同理可得[*] 又因为Tα
1
=(一5,0,3)=一5ε
1
+3ε
3
,Tα
2
=(0,一1,6)=一ε
2
+6ε
3
,Tα
3
=(一5,一1,9)=一5ε
1
一ε
2
+9ε
3
,从而有 [*] 同理可得[*] 所以T在基ε
1
,ε
2
,ε
3
下的矩阵为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/WWx4777K
0
考研数学三
相关试题推荐
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_____.
微分方程+y=1的通解是_________.
微分方程y"+2y’+5y=0的通解为________。
若β=(1,3,0)T不能由α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T线性表出,则a=______.
(14年)设随机变量X,Y的概率分布相同,X的概率分布为P{X=0}=,P{X=1}=,且X与Y的相关系数ρXY=.(Ⅰ)求(X,Y)的概率分布;(Ⅱ)求P{X+Y≤1}.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设f=xTAx,g=xTBx是两个n元正定二次型,则下列未必是正定二次型的是()
设齐次线性方程组经高斯消元化成的阶梯形矩阵是,则自由变量不能取成
设X1,X2,…,Xn是来自标准正态总体的简单随机样本,和S2为样本均值和样本方差,则
[2002年]假设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间(E(X))为5h.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2h便关机.试求该设备开机无故障工作的时间Y的分布函数FY(y).
随机试题
下列哪种病理类型的肺癌预后最差:()
幼儿难以理解反话的含义,是因为幼儿理解事物具有()
设
胃液分泌的调节主要通过
A.病程的第3~5日B.病程的第4~6日C.病程的第5~8日D.病程的第6~10日E.病程的第7~14日流行性出血热低血压休克期常发生在()
男,65岁。反复发作左上腹痛10年,多为夜间、饥饿时发作,上腹胀痛伴呕吐1天,吐后症状缓解。查体:左上腹压痛,振水音阳性。可能的诊断为
依据《建设工程质量管理条例》的规定,以下工作中,应由总监理工程师签字认可的是()。
下列选项中,符合《个人外汇管理办法实施细则》的有关规定的是()。
(2015年)下列有关存货监盘的说法中,正确的是()。
You’venowhearditsomanytimes:youcanprobablyrepeatitinyoursleep.PresidentObamawillnodoubtmakethepointpublic
最新回复
(
0
)