首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵。当k为何值时,存在可逆矩阵P,使得P—1AP为对角矩阵?并求出矩阵P和相应的对角矩阵。
设矩阵。当k为何值时,存在可逆矩阵P,使得P—1AP为对角矩阵?并求出矩阵P和相应的对角矩阵。
admin
2018-12-19
51
问题
设矩阵
。当k为何值时,存在可逆矩阵P,使得P
—1
AP为对角矩阵?并求出矩阵P和相应的对角矩阵。
选项
答案
矩阵A的特征多项式为 |λE—A|=[*]=(λ+1)
2
(λ一1)。 则A的特征值为λ
1
=λ
2
=一1,λ
3
=1。 矩阵A与对角矩阵相似的充要条件是属于特征值λ=一1的线性无关的特征向量有两个,即线性方程组(一E一A)x=0有两个线性无关的解向量,则r(A+E)=1。对矩阵A+E作初等行变换得 [*] 当k=0时,r(A+E)=1。此时,由(一E一A)x=0解得属于特征值一1的两个线性无关的特征向量为α
1
=(一1,2,0)
T
,α
2
=(1,0,2)
T
;由(E一A)x=0解得属于特征值1的特征向量为α
3
=(1,0,1)
T
。 令可逆矩阵P=(α
1
,α
2
,α
3
),则P
—1
AP=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/Okj4777K
0
考研数学二
相关试题推荐
设矩阵A=不可对角化,则a=________.
设α,β为四维非零的正交向量,且A=αβT.则A的线性无关的特征向量个数为().
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,-3,0,则|B-1+2E|=_________.
(2007年)设D是位于曲线y=(a>1,0≤χ<+∞)下方、χ轴上方的无界区域.(Ⅰ)求区域D绕χ轴旋转一周所成旋转体的体积V(a);(Ⅱ)当a为何值时,V(a)最小?并求此最小值.
(2012年)设(Ⅰ)计算行列式|A|;(Ⅱ)当实数a为何值时,方程组Aχ=β有无穷多解,并求其通解.
(2014年)设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的【】
(2007年)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是【】
随机试题
腕关节掌侧玻璃切伤,出现哪项体征说明有正中神经损伤
下列哪项是颞下颌关节紊乱病不可逆性的保守治疗
脓肿切开引流的操作哪项是正确的
下列哪项不是艾滋病患者淋巴结肿大的特征?
恒定混合策略和投资组合保险策略均为积极型资产配置策略,其支付模式为曲线。
咨询人员利用波士顿矩阵(BCG)分析后,发现某企业的一项业务属于现金牛业务,则这项业务的特点是()。
社会工作的研究报告可以分为()
有调查显示,国产品牌奶粉在一线城市的市场占有率仅有2%,而洋奶粉占98%。在退守二线、三线市场的同时,很多国产奶粉欲海外贴牌自救,即国内企业海外注册品牌,实际将国产奶粉销回国内,给国产奶粉披上洋奶粉的外衣,不少企业认为,海外贴牌有可能为国产奶粉生存提供一线
Pleasenotifyusofanynumberatwhichyourguardiancanbecontacted_______thereisanemergency.
StopBeingaPeoplePleaser1.Say"no"Givereasonsinsteadof【T1】excuses【T1】______ExamplesIt’sstressfulto【T2】alargefamil
最新回复
(
0
)