首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵。当k为何值时,存在可逆矩阵P,使得P—1AP为对角矩阵?并求出矩阵P和相应的对角矩阵。
设矩阵。当k为何值时,存在可逆矩阵P,使得P—1AP为对角矩阵?并求出矩阵P和相应的对角矩阵。
admin
2018-12-19
44
问题
设矩阵
。当k为何值时,存在可逆矩阵P,使得P
—1
AP为对角矩阵?并求出矩阵P和相应的对角矩阵。
选项
答案
矩阵A的特征多项式为 |λE—A|=[*]=(λ+1)
2
(λ一1)。 则A的特征值为λ
1
=λ
2
=一1,λ
3
=1。 矩阵A与对角矩阵相似的充要条件是属于特征值λ=一1的线性无关的特征向量有两个,即线性方程组(一E一A)x=0有两个线性无关的解向量,则r(A+E)=1。对矩阵A+E作初等行变换得 [*] 当k=0时,r(A+E)=1。此时,由(一E一A)x=0解得属于特征值一1的两个线性无关的特征向量为α
1
=(一1,2,0)
T
,α
2
=(1,0,2)
T
;由(E一A)x=0解得属于特征值1的特征向量为α
3
=(1,0,1)
T
。 令可逆矩阵P=(α
1
,α
2
,α
3
),则P
—1
AP=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/Okj4777K
0
考研数学二
相关试题推荐
(2013年)设当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C.
(2012年)设(Ⅰ)计算行列式|A|;(Ⅱ)当实数a为何值时,方程组Aχ=β有无穷多解,并求其通解.
(2000年)已知向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a、b的值.
(2015年)设矩阵,若集合Ω={1,2}则线性方程组Aχ=b有无穷多解的充分必要条件为【】
(2011年)设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Aχ=0的一个基础解系,则A*χ=0的基础解系可为【】
(2007年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5=4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α是矩阵B的特征向量,并求B的全部特征值与特征向量;
(2006年)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Aχ=0的两个解.(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:(1)A2;(2)A的特征值和特征向量;(3)A能否相似于对角阵,说明理由.
已知α1=[一1,1,a,4]T,α2=[一2,1,5,a]T,α3=[a,2,10,1]T是4阶方阵A的3个不同特征值对应的特征向量,则a的取值为()
设矩阵A=有三个线性无关特征向量,λ=2是A的二重特征值,试求可逆阵P,使得P一1AP=是对角阵.
随机试题
(2009年4月)提示事物发展趋势和道路的规律是_______。
下列关于脊椎结核的叙述,错误的是
A、毒性药品B、麻醉药品C、精神药品D、药品类易制毒化学品盐酸二氢埃托啡属于
甲将自己的一套房屋租给乙住,乙又擅自将房屋租给丙住。丙是个飞镖爱好者,因练飞镖将房屋的墙面损坏。下列哪些选项是正确的?(2009—卷三—60,多)
赵某是某中学的教师,一天晚上去朋友孙某家去做客。正好当时某区公安分局因为一件治安案件要对孙某进行拘留。因赵某要求公安人员出示证件而发生争执,随公安机关一同去的一人指认赵某也与治安案件有关,公安人员遂将赵某也强行带走。到公安局后,赵某辩解称自己是教师与此事无
拱桥净跨径是每孔拱跨的两拱脚截面()。
某国有企业拟将其资产转让,资产评估机构评估确认的价值为2000万元并经有关部门备案,但经公开征集没有产生意向受让方,其确定新的挂牌价格低于(),应当获得相关产权转让批准机构书面同意。
教育是人类特有的一种什么样的活动?()
Reebokexecutivesdonotliketoheartheirstylishathleticshoescalled"footwearforyuppies".TheycontentthatReebokshoes
Ourape-menforefathershadnoobviousnaturalweaponsinthestruggleforsurvivalintheopen.Theyhadneitherthepowerfult
最新回复
(
0
)