首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值为λ1=8,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为ξ1=,属于特征值λ2=λ3=2的特征向量为ξ2=,求属于λ2=λ3=2的另一个特征向量.
设三阶实对称矩阵A的特征值为λ1=8,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为ξ1=,属于特征值λ2=λ3=2的特征向量为ξ2=,求属于λ2=λ3=2的另一个特征向量.
admin
2019-08-28
42
问题
设三阶实对称矩阵A的特征值为λ
1
=8,λ
2
=λ
3
=2,矩阵A的属于特征值λ
1
=8的特征向量为ξ
1
=
,属于特征值λ
2
=λ
3
=2的特征向量为ξ
2
=
,求属于λ
2
=λ
3
=2的另一个特征向量.
选项
答案
因为实对称矩阵不同的特征值对应的特征向量正交,所以有 ξ
1
T
ξ
2
=-1+k=0[*]λ
1
=8对应的特征向量为ξ
1
=[*] 令λ
2
=λ
3
=2对应的另一个特征向量为ξ
3
=[*],由不同特征值对应的特征向量正交,得x
1
+x
2
+x
3
=0[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/OvJ4777K
0
考研数学三
相关试题推荐
设an=∫01t2(1一t)ndt,证明级数an收敛,并求其和.
(1989年)假设函数f(x)在[a,b]上连续.在(a,b)内可导,且f’(x)≤0.记证明在(a,b)内F’(x)≤0.
(93,6分)假设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,过点A(0,f(0))与B(1,f(1))的直线与曲线y=f(x)相交于点C(c,f(c)),其中0<c<1.证明:在(0,1)内至少存在一点ξ,使f’’(ξ)=0.
(2002年)设函数f(x),g(x)在[a,b]上连续,且g(x)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx.
设f(x)在(一∞,+∞)上二阶导数连续,f(0)=01)确定a使g(x)在(一∞,+∞)上连续;2)证明对以上确定的a,g(x)在(一∞,+∞)上有连续一阶导数.
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且A的秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解X=()
设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_______.
下列矩阵中,与矩阵相似的为()
随机试题
首先实行“九品中正制”的是()
_______罪,是指在道路上驾驶机动车追逐竞驶,情节恶劣的,或者在道路上醉酒驾驶机动车的行为。
关于嗜酸性粒细胞的叙述,错误的是()
关于血小板的功能,错误的是
下列不属于建立账套时需要建立的信息有()。
没译英:“泡沫塑料、胶合板箱、软包装”。()
不论是透明的还是彩色的隐形眼镜,透氧性都是重要的指标。角膜表面没有血管,是自己独立呼吸的器官,它通过直接与空气接触来获得氧。如果角膜获得的氧不足,那么角膜上皮细胞的健康就会受到影响,抵抗力也会变弱,如果是长期缺氧,角膜就要“呼救”了:周边组织向角膜内生长人
Themostdamningthingthatcanbesaidabouttheworld’sbest-endowedandrichestcountryisthatitisnotonlynottheleader
Whatisthesuspectedkiller?
A、PeoplewhoteachEnglishlikethingsbesidesbooks.B、Englishteachersusuallyliketoreadalot.C、TheEnglishteacherslike
最新回复
(
0
)