首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设[*5问a,b为何值时,β1,β2能同时由α1,α2,α3线性表出.若能表出时,写出其表出式; (Ⅱ)设问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
(I)设[*5问a,b为何值时,β1,β2能同时由α1,α2,α3线性表出.若能表出时,写出其表出式; (Ⅱ)设问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
admin
2014-09-22
105
问题
(I)设[*5问a,b为何值时,β
1
,β
2
能同时由α
1
,α
2
,α
3
线性表出.若能表出时,写出其表出式;
(Ⅱ)设
问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
选项
答案
(1)对增广矩阵[A|B]作初等行变换,得[*]①A≠3,b任意,β
1
,β
2
均可由α
1
,α
2
,α
3
线性表出,且表出法唯一.Aξ
1
=β
1
的解为x
1
=一3,x
2
=2,x
3
=0,即β
1
=一3α
1
+2α
2
.Aξ
2
=β
2
的解为[*]即[*]其中a≠3,b足任意常数.②a=3,b=1有无穷多解.β
1
,β
2
均可由α
1
,α
2
,α
3
线性表出且表出法无穷多.Aξ
1
=β
1
,有解k
1
[1, 2,1]
T
+[-2,0,1]
T
其中k
1
是任意常数.Aξ
2
=β
2
,有解是k
2
[1,一2,1]
T
+[1,0,0]
T
,其中k
2
是仟意常数. (Ⅱ)由(I)知。①当a≠3,b任意时,AX=B有唯一解,且[*] ②当a=3,b=1时,AX=B有无穷多解,且得[*]其中k
1
,k
2
是任意常数.
解析
(I)β
1
,β
2
可同时由α
1
,α
2
,α
3
线性表出,则a
1
x
1
+a
2
x
2
+a
3
x
3
=β
i
,i=1,2,方程都有解.
(Ⅱ)方程AX=B,将AX=B以列分块,设X=[ξ
1
,ξ
2
].B=[β
1
,β
2
]即A[ξ
1
,ξ
2
]=[β
1
,β
2
]
有解
;Aξ
1
=β
1
且Aξ
2
=β
2
有解.
转载请注明原文地址:https://kaotiyun.com/show/Pq54777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0,证明存在ξ∈(a,b),使
讨论方程axex+b=0(a>0)实根的情况。
已知f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0,证明:存在ξ,η∈(a,b),使得
设f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在[-1,1]内存在一点ξ,使得f”’(ξ)=3.
讨论方程2x3-9x2+12x-a=0实根的情况。
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关列向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
向量组α1,α2,…,αs(s≥2)线性相关的充要条件是().
设A为n阶矩阵,证明二次型f(x1,x2,…,xn)=xTATAx正定的充要条件是r(A)=n.
设实二次型f(x1,x2,x3)=xTAx经正交变换化成的标准形为f=2y12-y22-y32,A*是A的伴随矩阵,且向量α=[1,1,-1]T满足A*α=α,则二次型f(x1,x2,x3)=________.
随机试题
骨盆入口狭窄不会导致
为了实现进度目标,不但应进行控制,还应注意分析影响工程进度的风险,常见的影响工程进度的风险有( )。
在其他条件不变的情况下,资本价格下降所产生的规模效应会导致()。[2004年真题]
根据房产税法律制度的规定,下列各项中,不予免征房产税的是()。
有“火山地貌博物馆”之称的是()。
冯特对心理学的历史贡献主要包括()。
如图所示,一次函数y=kx+b的图像与反比例函数的图像交于A(1,2),B(—m,—1)两点.[img][/img]根据图像直接写出使一次函数的值大于反比例函数的值的x的取值范围.
2015年,全国报告发生因滥用毒品导致暴力攻击、自杀自残、毒驾肇事等极端案件事件336起,查获涉案吸毒人员349名,破获吸毒人员引发的刑事案件17.4万起,全国每年因吸毒造成的直接经济损失及禁毒相关投入超过万亿元。根据以下毒品种类示意图回答问题:关
下列行为不属于侵犯我国公民的通信自由和通信秘密的是()。
以下不属于VisualBasic数据文件的是
最新回复
(
0
)