首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]三阶可导,且f(0)=f(1):0.设F(x)=x2f(x),求证:在(0,1)内存在c,使得F’"(c)=0.
设f(x)在[0,1]三阶可导,且f(0)=f(1):0.设F(x)=x2f(x),求证:在(0,1)内存在c,使得F’"(c)=0.
admin
2019-02-20
75
问题
设f(x)在[0,1]三阶可导,且f(0)=f(1):0.设F(x)=x
2
f(x),求证:在(0,1)内存在c,使得F’"(c)=0.
选项
答案
由于F(0)=F(1)=0,F(x)在[0,1]可导,故存在ξ
1
∈(0,1)使得F’(ξ
1
)=0.又 F’(x)=x
2
f’(x)+2xf(x), 于是由F’(0)=0,F’(ξ
1
)=0及F’(x)在[0,1]可导知,存在ξ
2
∈(0,ξ
1
)使得F"(ξ
2
)=0.又因 F"(x)=x
2
f"(x)+4xf’(x)+2f(x), 于是由F"(0)=F"(ξ
2
)=0及F"(x)在[0,1]可导知,存在c∈(0,ξ
2
)[*](0,1)使得F’"(c)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/QFP4777K
0
考研数学三
相关试题推荐
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设矩阵A=,已知齐次线性方程组Ax=0的解空间的维数为2,求a的值并求出方程组Ax=0的用基础解系表示的通解.
设A为m×n矩阵,B为n×p矩阵,证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(A┆B).
设f(x)为连续的奇函数,且当x<0时,f(x)<0,f’(x)≥0.令φ(x)=∫—11f(xt)dt+∫0xtf(t2一x2)dt,讨论φ(x)在(一∞,+∞)内的凹凸性.
设随机变量X的概率密度为F(x)是X的分布函数.求随机变量Y=F(X)的分布函数.
假设随机变量X和Y独立同分布.P{X=0}=P{Y=0}=1一p,P{X=1}=P{Y=1}=p.随机变量Z=问p取何值时,X和Z独立?这时X,Y,Z是否相互独立?
假设随机变量X在区间[一1,1]上均匀分布,则arcsinX和arccosX的相关系数等于().
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
设某商品的收益函数为R(P),收益弹性为1+P3,其中P为价格,且R(1)=1,则R(P)=_________.
随机试题
阅读曹雪芹《宝玉挨打》中的文字:此时林黛玉虽不是嚎啕大哭,然越是这等无声之泣,气噎喉堵,更觉得利害。听了宝玉这番话,心中虽然有万句言词,只是不能说得,半日,方抽抽噎噎的说道:“你从此可都改了罢!”请回答:宝玉挨打,黛玉为什么只是“
以下对“可在乳汁中排泄的药物的特性”的叙述,正确的是()
某县公安局接到有人在薛某住所嫖娼的电话举报,遂派员前往检查。警察到达举报现场,敲门未开破门入室,只见薛某一人。薛某拒绝在检查笔录上签字,警察在笔录上注明这一情况。薛某认为检查行为违法,提起行政诉讼。下列哪些选项是正确的?()(司考2009.2.8
证券公司的()应当对证券公司年度报告签署确认意见。
企业实施了一项狭义的“资金分配”活动,由此而形成的财务关系是()。
抵押当事人应当在房地产抵押合同签订之日起()日内,到房地产所在地的房地产管理部门办理房地产抵押登记。
称重法食物摄入量调查及膳食营养分析对某一家庭用称重法进行膳食调查,就餐人数为4人,下表是一日早餐的调查结果。(1)根据上表提供的称重法膳食调查结果,计算当日早餐各种食物的人均摄人量及生熟比,填入上表中。(2)如当日人均摄入的食物为:大米280g,面
给定资料1.媒体披露H省一中学发生群发性肺结核事件后,A县政府官网于2017年11月16日中午通报证实确有此事,但对事件涉及的范围和人数只字未提。而根据《结核病防治管理办法》,肺结核疫情严重,构成突发公共卫生事件的,应当及时向社会公布疫情处置情况
有96位顾客至少购买了甲、乙、丙三种商品中的一种.经调查:同时购买了甲、乙两种商品的有8位,同时购买了甲、丙两种商品的有12位,同时购买了乙、丙两种商品的有6位,同时购买了三种商品的有2位,则仅购买一种商品的顾客有()位.
Returningtomyapartment,______.
最新回复
(
0
)