首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,g(x)满足f’(x)=g(x),g’(x)=2ex-f(x),且f(0)=0,g(0)=2,求
设f(x,g(x)满足f’(x)=g(x),g’(x)=2ex-f(x),且f(0)=0,g(0)=2,求
admin
2019-03-12
59
问题
设f(x,g(x)满足f’(x)=g(x),g’(x)=2e
x
-f(x),且f(0)=0,g(0)=2,求
选项
答案
由f’(x)=g(x)可得f’’(x)=g’(x),结合g’(x)=2e
x
-f(x)可得f(x)满足微分方程 f’’(x)=2e
x
-f(x),即 y’’=2e
x
-y. 它对应的齐次方程为y’’+y=0,特征方程为λ
2
+1=0,特征根为λ
1
=i,λ
2
=-i.因此y’’+y=0的通解为 y=C
1
cosx+C
2
sinx. 在y’’+y=2e
x
中,由于λ=1不是其齐次方程的特征根,因此它有形如y=ae
x
的特解,将y=ae
x
代入方程y’’+y=2e
x
中可得a=1.因此y’’+y=2e
x
的通解为 y=C
1
cosx+C
2
sinx+e
x
由f(0)=0,g(0)=2,可知f(x)是y’’+y=2e
x
的满足初值条件y(0)=0,y’(0)=2的特解.将初值条件代入通解中得C
1
=-1,C
2
=1.因此 f(x)=-cosx+sinx+e
x
. 由于 [*] 注意到,f(0)=0,f’(x)=g(x),因此 [*]
解析
由f’(x)=g(x)两边求导可得f’’(x)=g’(x),再由g’(x)=2e
x
-f(x)可得f(x)所满足的微分方程.
转载请注明原文地址:https://kaotiyun.com/show/S8P4777K
0
考研数学三
相关试题推荐
已知级数an收敛,并求此级数的和.
设a>0为常数,则级数
设由方程φ(bz—cy,cx一az,ay—bx)=0(*)确定隐函数z=z(x,y),其中φ对所有变量有连续偏导数,a,b,c为非零常数,且bφ’1一aφ2≠0,求.
设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程xex一yey=zez所确定,求du.
设f具有二阶连续偏导数,求下列函数的偏导数与全微分:(Ⅰ)z=f(x2+y2,eycosx),求.
设D是由曲线=1(a>0,b>0)与x轴,y轴围成的区域,求I=ydxdy.
设D1是由曲线y=和直线y=a及x=0所围成的平面区域;D2是由曲线y=和直线y=a及x=1所围成的平面区域,其中0<a<1.(Ⅰ)试求D1绕x轴旋转而成的旋转体体积V1;D2绕y轴旋转而成的旋转体体积V2(如图3.8);(Ⅱ)问当a为
计算(a>0),其中D是由圆心在点(a,a)、半径为a且与坐标轴相切的圆周的较短一段弧和坐标轴所围成的区域.
设D是由曲线y=x3与直线x=一1与y=1围成的区域,D1是D在第一象限的部分,则(xy+cosxsiny)dxdy=____.
在椭圆=1的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积最小.
随机试题
用水蒸气在列管换热器中加热某盐溶液,水蒸气走壳程。为强化传热,下列措施中最为经济有效的是()。
患者刘某,住院第二天,主管护士查房时刘某说:“感觉不舒适,难以入睡”。护士给其提供护理时首先应()。
A.泪腺神经B.眼神经C.额神经D.上颌神经E.鼻睫状神经三叉神经最小的分支是
善于上助心阳、中温脾阳、下补肾阳的药物是
石菖蒲来源于()
A县药品稽查人员在该县的一村卫生室进行监督检查,现场查获标示为B省的大众生物科技有限公司生产的金银花百合片和乌梢蛇桔梗胶囊等8种产品,共计6000盒,这些产品所含成分与国家药品标准规定的成分不符。A县公安局经立案侦查发现,B省的大众生物科技有限公司是两年
(2016年)陈某转让一辆中巴车给王某但未办过户。王某为了运营,与明星汽运公司签订合同,明确挂靠该公司,王某每月向该公司交纳500元,该公司为王某代交规费、代办各种运营手续、保险等。明星汽运公司依约代王某向鸿运保险公司支付了该车的交强险费用。
甲公司因2006年4月1日的资产置换业务而换入的固定资产的入账价值为()元。2006年度甲公司因对丙公司的长期股权投资使公司的税前利润增加()元。
针对性强,适宜少数尖端客户,能为客户提供需要的个性化服务的营销策略是()。
根据最新数据,目前英国每年新增约1.3万名恶性黑色素瘤患者,而1975年时这一数字仅为1800人。从患病率上看,如今每万名英国人中有17人罹患此病,40年前的患病率则是万分之三。恶性黑色素瘤每年在英国造成2000多人死亡,是第五大癌症杀手。英国癌症研究会认
最新回复
(
0
)