首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵,已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P-1AP为对角形矩阵.
设矩阵,已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P-1AP为对角形矩阵.
admin
2021-11-09
25
问题
设矩阵
,已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P
-1
AP为对角形矩阵.
选项
答案
因为A有3个线性无关的特征向量,λ=2是A的二重特征值,所以A的属于λ=2的线性无关的特征向量必有两个,故r(2E-A)=1.经过初等行变换,得 [*] 解得x=2,y=-2. 设A的特征值为λ
1
,λ
2
,λ
3
,且λ
1
=λ
2
=2,则trA=λ
1
+λ
2
+λ
3
=2+2+λ
3
=1+4+5=10,得λ
3
=6. 对于特征值λ
1
=λ
2
=2,解齐次线性方程组(2E-A)x=0,有 [*] 对应的两个线性无关的特征向量为 ξ
1
=(1,-1,0)
T
,ξ
2
=(1,0,1)
T
. 对于特征值λ
3
=6,解齐次线性方程组(6E-A)x=0,有 [*] 对应的特征向量为 ξ
3
=(1,-2,3)
T
令可逆矩阵 [*] 则有 [*]
解析
本题主要考查矩阵相似于对角矩阵的充分必要条件以及把一个矩阵化为对角矩阵的方法.因为A有3个线性无关的特征向量,λ=2是A的二重特征值,所以,A对应于λ=2的线性无关的特征向量有两个,故r(2E-A)=1.对矩阵2E-A作适当的初等行变换,通过r(2E-A)=1确定出x和y的值,从而确定出A.再按现成的方法求可逆矩阵P使P
-1
AP为对角形.
转载请注明原文地址:https://kaotiyun.com/show/USy4777K
0
考研数学二
相关试题推荐
证明:当χ>0时,arctanχ+.
证明:方程lnχ=在(0,+∞)内有且仅有两个根.
函数在(-∞,+∞)内().
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0基础解系为().
设存在,则常数k=.
设函数其中g(x)二阶连续可导,且g(0)=1.确定常数a,使得f(x)在x=0处连续。
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任一点。证明:|f’(c)|≤.
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解。
设向量组a1,a2,...,an-1为n维线性无关的列向量组,且与非零向量Β1,Β2正交。证明:Β1,Β2线性相关。
设求∫02f(x-1)dx.
随机试题
毒血症是指病原菌以及它产生的毒素均进入血液。()
呼吸频率从12次/分增加到24次/分,潮气量从500ml减少到250ml时
CO2和O2跨膜转运属于
男,38岁,诊断为慢性肾炎,有明显水肿,尿蛋白(+++),尿素氮18mmol/L,应给予哪种饮食
A.高压蒸汽灭菌法B.紫外线照射法C.巴氏消毒法D.滤过除菌法E.干烤法常用于空气或物体表面的消毒是
硝酸甘油不扩张下列哪类血管()
2016年9月,A、B、C、D协商设立普通合伙企业。其中,A、B、D系辞职职工,C系一法人型集体企业,其拟定的合伙协议约定:A以劳务出资、B、D以实物出资,对企业债务承担无限责任,并由A、D负责公司的经营管理事务;C以货币出资,对企业债务以其出资额承担有限
2001-2004年,蝴蝶牌自行车产量年均增长多少?
处在最近发展区的儿童()完成一系列相关任务。
党的十八大报告首次提出“城乡居民人均收人”()翻一番。
最新回复
(
0
)