首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵,已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P-1AP为对角形矩阵.
设矩阵,已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P-1AP为对角形矩阵.
admin
2021-11-09
28
问题
设矩阵
,已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P
-1
AP为对角形矩阵.
选项
答案
因为A有3个线性无关的特征向量,λ=2是A的二重特征值,所以A的属于λ=2的线性无关的特征向量必有两个,故r(2E-A)=1.经过初等行变换,得 [*] 解得x=2,y=-2. 设A的特征值为λ
1
,λ
2
,λ
3
,且λ
1
=λ
2
=2,则trA=λ
1
+λ
2
+λ
3
=2+2+λ
3
=1+4+5=10,得λ
3
=6. 对于特征值λ
1
=λ
2
=2,解齐次线性方程组(2E-A)x=0,有 [*] 对应的两个线性无关的特征向量为 ξ
1
=(1,-1,0)
T
,ξ
2
=(1,0,1)
T
. 对于特征值λ
3
=6,解齐次线性方程组(6E-A)x=0,有 [*] 对应的特征向量为 ξ
3
=(1,-2,3)
T
令可逆矩阵 [*] 则有 [*]
解析
本题主要考查矩阵相似于对角矩阵的充分必要条件以及把一个矩阵化为对角矩阵的方法.因为A有3个线性无关的特征向量,λ=2是A的二重特征值,所以,A对应于λ=2的线性无关的特征向量有两个,故r(2E-A)=1.对矩阵2E-A作适当的初等行变换,通过r(2E-A)=1确定出x和y的值,从而确定出A.再按现成的方法求可逆矩阵P使P
-1
AP为对角形.
转载请注明原文地址:https://kaotiyun.com/show/USy4777K
0
考研数学二
相关试题推荐
证明:.
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在ε∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ε).
设f(x)二阶连续可导,且f"(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0﹤θ﹤1).证明:.
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ε∈(0,1),使得.
求由方程x2+y3-xy=0确定的函数在x﹥0内的极值,并指出是极大值还是极小值。
确定常数a,b,c,使得.
以y=C1ex+ex(C2cosx+C3sinx)为通解的三阶常系数齐次线性微分方程为________.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
设求[img][/img]
设求∫02f(x-1)dx.
随机试题
用于金属物品消毒的消毒剂应进行金属腐蚀性试验,试验浓度应选择
副伤寒与伤寒的区别在于
成人毛细血管采血最常用的部位是
威灵仙药用部位为
胡某,男,31岁,患痔疮4年。近期无痛性便血加重,在排便时间歇滴血,痔核脱出肛门外,排便后不可自行恢复。医生要为其手术治疗,术前护理措施不正确的是
章回体是我国古典小说的主要形式,《红楼梦》是章回体小说的开山之作。()
n为100以内的自然数,那么能令2n-1被7整除的n有多少个?
Properlightingisanecessaryforgoodeyesighteventhoughhumannightvisioncanbetemporarilyimpairedbyextremeflasheso
Duringthemedievaltimes,ifonemancoveredinarmorextendedanopenhandtoanother,______.
America’smostpopularnewspaperwebsitetodayannouncedthattheeraoffreeonlinejournalismisdrawingtoaclose.TheNewY
最新回复
(
0
)