首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(1)Anx=0和(2)An+1x=0,现有四个命题: ①(1)的解必是(2)的解; ②(2)的解必是(1)的解; ③(1)的解不是(2)的解; ④(2)的解不是(1)的解。 以上命题中正确的是( )
设A是n阶矩阵,对于齐次线性方程组(1)Anx=0和(2)An+1x=0,现有四个命题: ①(1)的解必是(2)的解; ②(2)的解必是(1)的解; ③(1)的解不是(2)的解; ④(2)的解不是(1)的解。 以上命题中正确的是( )
admin
2019-01-19
50
问题
设A是n阶矩阵,对于齐次线性方程组(1)A
n
x=0和(2)A
n+1
x=0,现有四个命题:
①(1)的解必是(2)的解; ②(2)的解必是(1)的解;
③(1)的解不是(2)的解; ④(2)的解不是(1)的解。
以上命题中正确的是( )
选项
A、①②。
B、①④。
C、③④。
D、②③。
答案
A
解析
若A
n
α=0,则A
n+1
α=A(A
n
α)=A0=0,即若α是(1)的解,则α必是(2)的解,可见命题①正确。
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,Aα,A
2
α,…,A
n
α一方面,若kα+k
1
Aα+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘该式的两边得kA
n
α=0,由A
n
α≠0可知必有k=0。类似地可得k
1
=k
2
=…=k
n
=0,因此α,Aα,A
2
α,…,A
n
α线性无关。
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾。故A
n+1
α=0时,必有A
n
α=0,即(2)的解必是(1)的解。因此命题②正确。
综上可知本题应选A。
转载请注明原文地址:https://kaotiyun.com/show/UmP4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Ax=0的基础解系,若存在ηi(i=1,2,…,t),使Aηi=ξi,证明:向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
设A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT—E且B的行向量是齐次方程组Ax=0的解,P是m阶可逆矩阵,证明:矩阵PB的行向量是Ax=0的基础解系.
设A=,若Ax=0的基础解系由2个线性无关的解向量构成,
已知α1=(1,1,0)T,α2=(1,3,一1)T,α3=(2,4,3)T,α4=(1,一1,5)T,A是3阶矩阵,满足Aα1=α2,Aα2=α3,Aα3=α4,求Aα4.
设A是n阶实对称矩阵,证明:A可逆的充要条件是存在n阶实矩阵B,使得AB+BTA是正定阵.
设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
二次型4x22一3x32+2ax1x2—4x1x3+8x2x3经正交变换化为标准形y12+6y22+by32,则a=__________.
已知二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2.a1,a2,…,an满足什么条件时f(x1,x2,…,xn)正定?
随机试题
当材料孔隙率增加时,保温隔热性()。
新生儿,出生26小时,因“无明显诱因出现颜面皮肤浅黄染6小时”就诊。患儿精神及吃奶可,无发热、嗜睡、拒奶、抽搐等症状。当地医院给予单面蓝光照射治疗12小时,皮肤黄疸较前加重,波及躯干及四肢。患儿为G2P1,母孕39周自然分娩,母亲血型O型,无特殊疾病及特殊
下列属于脾的主要功能的是
磺胺类药物的类似物是磺胺类药物抑制的酶是
下列对商业银行内部审计的描述中,错误的是()。
阅读下面的文章,回答问题。现在一提到“经”,就给人以庄重严肃的感觉,实际上“经”字的本义只是指纺织上的一条条竖线,而横线则叫“纬”。没有“经”,“纬”就无所依托,因此在汉代被命名为“经”的应该是朝廷最重视的文献。不过,清代今文经学派认为只有孔子亲
在某图书馆中,涉及民国时期的历史书均只存放于第二层的专业书库中,外文类的典藏书籍均只存放于第三层的珍本阅览室中。小林周末到该图书馆借了一本外文类历史书。由此可以推出小林借的书:
下列关于SET叙述中正确的是________。
下列各组的排序方法中,最坏情况下比较次数相同的是
In1929Parliamentdecreedthatallwomenshouldhavetherighttovote.
最新回复
(
0
)