首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(1)Anx=0和(2)An+1x=0,现有四个命题: ①(1)的解必是(2)的解; ②(2)的解必是(1)的解; ③(1)的解不是(2)的解; ④(2)的解不是(1)的解。 以上命题中正确的是( )
设A是n阶矩阵,对于齐次线性方程组(1)Anx=0和(2)An+1x=0,现有四个命题: ①(1)的解必是(2)的解; ②(2)的解必是(1)的解; ③(1)的解不是(2)的解; ④(2)的解不是(1)的解。 以上命题中正确的是( )
admin
2019-01-19
41
问题
设A是n阶矩阵,对于齐次线性方程组(1)A
n
x=0和(2)A
n+1
x=0,现有四个命题:
①(1)的解必是(2)的解; ②(2)的解必是(1)的解;
③(1)的解不是(2)的解; ④(2)的解不是(1)的解。
以上命题中正确的是( )
选项
A、①②。
B、①④。
C、③④。
D、②③。
答案
A
解析
若A
n
α=0,则A
n+1
α=A(A
n
α)=A0=0,即若α是(1)的解,则α必是(2)的解,可见命题①正确。
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,Aα,A
2
α,…,A
n
α一方面,若kα+k
1
Aα+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘该式的两边得kA
n
α=0,由A
n
α≠0可知必有k=0。类似地可得k
1
=k
2
=…=k
n
=0,因此α,Aα,A
2
α,…,A
n
α线性无关。
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾。故A
n+1
α=0时,必有A
n
α=0,即(2)的解必是(1)的解。因此命题②正确。
综上可知本题应选A。
转载请注明原文地址:https://kaotiyun.com/show/UmP4777K
0
考研数学三
相关试题推荐
已知向量组(I)α1=(1,3,0,5)T,α2=(1,2,1,4)T,α3=(1,1,2,3)T与向量组(Ⅱ)β1=(1,一3,6,一1)T,β2=(a,0,6,2)T等价,求a,b的值.
设A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT—E且B的行向量是齐次方程组Ax=0的解,P是m阶可逆矩阵,证明:矩阵PB的行向量是Ax=0的基础解系.
知A、B均是三阶矩阵,将A中第3行的一2倍加到第2行得矩阵A1,将B中第一列和第2列对换得到B1,又A1B1=,则AB=__________.
设向量组I:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则().
设随机变量X1和X2各只有一1,0,1等三个可能值,且满足条件P{Xi=一1}=P{Xi=1}=(i=1,2).试在下列条件下分别求X1和X2的联合分布.(1)P{X1X2=0}=1;(2)P{X1+X2=0}=
设f(x)=xTAx为一n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
二次型4x22一3x32+2ax1x2—4x1x3+8x2x3经正交变换化为标准形y12+6y22+by32,则a=__________.
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2-4x1x3+8x2x3的矩阵A=_______,规范形是______.
设α1=,α2=,α3=,则α1,α2,α3经过施密特正交规范化后的向量组为________.
随机试题
报价阶段谈判的中心是()
患儿,男性,1岁。3天前发热38.5℃,热退后出现口腔溃疡,哭闹,拒食,流涎。检查:口腔黏膜片状充血,有数十个溃疡,有的互相融合,疮破溃后形成痂壳。最可能的诊断是
患者,男,60岁。因腹胀就诊,查体脾脏增大至脐下,质地坚实,表面光滑,切迹明显,无压痛,血象检查白细胞为80×109/L,中性杆状核和晚幼粒细胞为多,骨髓象见各系细胞极度增生,以粒系为主,粒细胞与红细胞计数比例增至30:1,应首先考虑的诊断是
在代理关系中,委托代理关系终止的条件包括( )。
上述网络计划的计算工期Tc为()天。关键路线是指在各线路中,有一条或几条线路的()。
下列各项中,有助于改善商业银行声誉风险管理的操作实践的有()。
公司分立的动机有()。
某企业采用托收承付结算方式销售一批商品,增值税专用发票注明的价款为l000万元,增值税税额为170万元;销售商品为客户代垫运输费10万元,增值税税额为1.1万元。全部款项已办妥托收手续。该企业应确认的应收账款为()万元。
市场份额属于平衡计分卡的()方面。
下面所述步骤中,()不是创建进程所必需的步骤。
最新回复
(
0
)