首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次曲面方程 x2+ay2+z2+2bxy+2xz+2yz=4 可以经过正交变换 化为椭圆柱面方程η2+4ξ2=4,求a,b的值和正交矩阵P.
已知二次曲面方程 x2+ay2+z2+2bxy+2xz+2yz=4 可以经过正交变换 化为椭圆柱面方程η2+4ξ2=4,求a,b的值和正交矩阵P.
admin
2018-09-25
61
问题
已知二次曲面方程
x
2
+ay
2
+z
2
+2bxy+2xz+2yz=4
可以经过正交变换
化为椭圆柱面方程η
2
+4ξ
2
=4,求a,b的值和正交矩阵P.
选项
答案
二次型的矩阵 [*] 其特征值λ
1
=0,λ
2
=1,λ
3
=4. 由 [*] 可知a=3,b=1. 属于λ
1
=0的单位化特征向量p
1
= [*] 属于λ
2
=1的单位化特征向量p
2
= [*] 属于λ
3
=4的单位化特征向量p
3
= [*] 则所求正交矩阵P=[p
1
,p
2
,p
3
].
解析
转载请注明原文地址:https://kaotiyun.com/show/Veg4777K
0
考研数学一
相关试题推荐
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
设某种商品的合格率为90%,某单位要想给100名职工每人一件这种商品.试求:该单位至少购买多少件这种商品才能以97.5%的概率保证每人都可以得到一件合格品?
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
设A,B均为n阶矩阵,且AB=A+B,证明A—E可逆.
设n维列向量α1,α2,…,αn-1,β线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
已知向量β可以由α1,α2,…,αs线性表出,证明:表示法唯一的充分必要条件是α1,α2,…,αs线性无关.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
设α1=(1,1)T,α2=(1,0)T和β1=(2,3)T,β2=(3,1)T,求由α1,α2到β1,β2的过渡矩阵.
设X1,X2,…,Xn是取自正态总体X的简单随机样本,EX=μ,DX=4,试分别求出满足下列各式的最小样本容量n:(Ⅰ)P{|一μ|≤0.10}≥0.90;(Ⅱ)D≤0.10;(Ⅲ)E|-μ|≤0.10.
随机试题
Accordingtoastudyonchildren’sbehavior,thetime_______thechildrenspendintheirone-wayrelationshipwithtelevisionpe
A.燥邪B.湿邪C.暑邪D.寒邪夏季易感受的邪气是
关于咽旁间隙的描述中错误的是
定点生产企业未按照麻醉药品年度生产计划安排生产,应责令限期改正,逾期不改的,责令停产,并处
天天公司与北方公司在履行机床购销合同过程中发生争议,双方在合同中未约定仲裁条款,当事人可以采取的合法途径有:
在流砂地层中,预制沉井法施工应采取不排水下沉湿式沉井方法施工,不排水下沉可分为()。
甲公司2013年12月15日购入一台入账价值为200万元的生产设备,购入后即达到预定可使用状态。该设备预计使用寿命为10年,预计净残值为12万元,按照年限平均法计提折旧。2014年年末因出现减值迹象,甲公司对该设备进行减值测试,预计该设备的公允价值为110
关于我国的贷款管理制度,下列错误的说法是()。
对于假想防卫,应当()。
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足.则f(x)的表达式是____________.
最新回复
(
0
)