首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次曲面方程 x2+ay2+z2+2bxy+2xz+2yz=4 可以经过正交变换 化为椭圆柱面方程η2+4ξ2=4,求a,b的值和正交矩阵P.
已知二次曲面方程 x2+ay2+z2+2bxy+2xz+2yz=4 可以经过正交变换 化为椭圆柱面方程η2+4ξ2=4,求a,b的值和正交矩阵P.
admin
2018-09-25
79
问题
已知二次曲面方程
x
2
+ay
2
+z
2
+2bxy+2xz+2yz=4
可以经过正交变换
化为椭圆柱面方程η
2
+4ξ
2
=4,求a,b的值和正交矩阵P.
选项
答案
二次型的矩阵 [*] 其特征值λ
1
=0,λ
2
=1,λ
3
=4. 由 [*] 可知a=3,b=1. 属于λ
1
=0的单位化特征向量p
1
= [*] 属于λ
2
=1的单位化特征向量p
2
= [*] 属于λ
3
=4的单位化特征向量p
3
= [*] 则所求正交矩阵P=[p
1
,p
2
,p
3
].
解析
转载请注明原文地址:https://kaotiyun.com/show/Veg4777K
0
考研数学一
相关试题推荐
设A,B均是n阶对称矩阵,则AB是对称矩阵的充要条件是__________.
若A是对称矩阵,B是反对称矩阵,则AB是反对称矩阵的充要条件是AB=BA.
设A,B均为n阶矩阵,且AB=A+B,证明A—E可逆.
设f(x)在[-2,2]上有连续的导数,且f(0)=0,F(x)=f(x+t)dt,证明级数绝对收敛.
设n维列向量α1,α2,…,αn-1,β线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
已知α1=(1,一1,1)T,α2=(1,t,一1)T,α3=(t,1,2)T,β=(4,t2,一4)T,若β可以由α1,α2,α3线性表出且表示法不唯一,求t及β的表达式.
设X1,X2,…,Xn是取自正态总体X的简单随机样本,EX=μ,DX=4,试分别求出满足下列各式的最小样本容量n:(Ⅰ)P{|一μ|≤0.10}≥0.90;(Ⅱ)D≤0.10;(Ⅲ)E|-μ|≤0.10.
已知a,b,c不全为零,证明方程组只有零解.
随机试题
有如下类声明:classPam{intk;public:Pam(intn);voidshow()const{cout
我国第一个全国性的关于医疗事故处理问题的行政法规颁布于
超声探头必须具有一定的技术特性.下列哪一项是错误的
窦性心动过缓,心率不低于50次/分,常采用措施是()。
企业劳动定员标准按照管理体制分类方法,可分为()
组织教学只是在上课开始时进行的。()
国务院批转《关于深化收入分配制度改革的若干意见》提出加快健全再分配调节机制。下列属于再分配调节机制的是()。
下列不属于我国民法规定的处理相邻关系的原则的是()。
本杰明:“除非所有的疾病都必然有确定的诱因,否则有些疾病可能难以预防。”富兰克林:“我不同意你的看法。”以下哪项断定,最能准确表达富兰克林的看法?
下面是路由器R1的配置命令列表,在空白处填写合适的命令/参数,实现R1的正确配置。Router>enRouter>conftermRouter(config)#hostnameR1(1)R1(config-if)#i
最新回复
(
0
)