首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,B是n×m矩阵,E是m阶单位矩阵,若AB=E,则( )
设A是m×n矩阵,B是n×m矩阵,E是m阶单位矩阵,若AB=E,则( )
admin
2021-02-25
37
问题
设A是m×n矩阵,B是n×m矩阵,E是m阶单位矩阵,若AB=E,则( )
选项
A、秩r(A)=m,秩r(B)=m
B、秩r(A)=m,秩r(B)=n
C、秩r(A)=n,秩r(B)=m
D、秩r(A)=n,秩r(B)=n
答案
A
解析
本题考查矩阵求秩的有关公式.
由矩阵秩的性质可得
r(A)≤min{m,n}≤m,r(B)≤min{m,n}≤m.
又由AB=E可知
m=r(E)=r(AB)≤min{r(A),r(B)},
从而有r(A)≥m及r(B)≥m.所以,
r(A)=r(B)=m.
故应选A.
转载请注明原文地址:https://kaotiyun.com/show/XZ84777K
0
考研数学二
相关试题推荐
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设A,B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
已知A,B为三阶矩阵,且秩(B)=2,秩(AB)=1.试求AX=0的通解.
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
(2003年试题,十二)已知平面上三条不同直线的方程分别为l1:ax+2b+3c=0l2:bx+2cy+3a=0l3:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
设f(x)在区间[a,b]上具有二阶导数,且f(a)=f(b)=0,f’(a).f’(b)>0.试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f"(η)=0.
[2002年]已知A,B为三阶矩阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵.(1)证明矩阵A一2E可逆;(2)若B=,求矩阵A.
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=-2,则行列式|-A1-2A2,2A2+3A3,-3A3+2A1|=_______.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为____________.
设三阶方阵A,B满足关系式A-1BA=6A+BA,且则B=__________。
随机试题
简单随机抽样必须符合的原则是()
下列哪一种治法,不是《血证论》提出的治血大法
劳累易于诱发,活动则症状加重的胸痹多见何证
消化性溃疡复发和治愈的关键因素是
A.葶苈子B.杏仁C.白芥子D.黄药子E.苏子能止咳平喘,润肠通便,但有小毒的药物是
人民法院受理案件后,委托我国驻美使领馆将起诉状副本送达被告,但由于被告已不在原住址居住,起诉状副本被退回。此时人民法院应当;如果人民法院于2005年4月30日作出判决,即日作出判决公告,那么该判决生效日期应为:
课业及其进程指的是()。
教育学的研究对象是以“教育事实、教育现象和教育规律”为基础的。()
(2008年国考)中国古人将阴历月的大月定为30天,小月定为29天,一年有12个月,即354天,比阳历年少了11人多。怎么办呢?在19个阴历年里加7个闰月,就和19个阳历年的长度几乎相等。这个周期的发明巧妙地解决了阴阳历调和的难题,比希腊人梅冬的发明日早了
许多报纸有两种版面——免费的网络版和花钱订阅的印刷版。报纸上网使得印刷版的读者迅速流失,而网络版的广告收入有限,报纸经济收益大幅下挫。如果不上网,报纸的影响力会大大下降。如果对网络版收费,很多读者可能会流转到其他网站。要让读者心甘情愿地掏腰包,报纸必须提供
最新回复
(
0
)