首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程 后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程 后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
admin
2018-09-25
39
问题
已知齐次线性方程组(Ⅰ)的基础解系为ξ
1
=[1,0,1,1]
T
,ξ
2
=[2,1,0,-1]
T
,ξ
3
=[0,2,1,-1]
T
,添加两个方程
后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
选项
答案
方程组(Ⅰ)的通解为 k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
= [*] 其中k
1
,k
2
,k
3
是任意常数.代入添加的两个方程,得 [*] 得解η
1
=[2,一3,0]
T
,η
2
=[0,1,-1]
T
,故方程组(Ⅱ)的基础解系为 ζ
1
=2ξ
1
-3ξ
2
=[-4,-3,2,5]
T
,ζ
2
=ξ
2
-ξ
3
[2,-1,-1,0]
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Xeg4777K
0
考研数学一
相关试题推荐
设A为n阶可逆矩阵,证明:(A*)*=|A|n-2A.
=___________.
设A,P均为3阶矩阵,PT为P的转置矩阵,且PTAP=.若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QTAQ=
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表出,β2=(0,1,2)T不能由α1,α2,α3线性表出,则a=__________.
设(Ⅰ)求f′(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令xn=,考察f′(x0)是正的还是负的,n为非零整数;(Ⅳ)证明:对δ>0,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
设有参数方程0≤t≤π.(Ⅰ)求证该参数方程确定y=y(x),并求定义域;(Ⅱ)讨论y=y(x)的可导性与单调性;(Ⅲ)讨论y=y(x)的凹凸性.
设流速V=(x2+y2)j+(z-1)k,求下列情形流体穿过曲面∑的体积流量Q(如图9.69):(Ⅰ)∑为圆锥面x2+y2=z2(0≤z≤1),取下侧;(Ⅱ)∑为圆锥体(z2≥x2+y2,0≤z≤1)的底面,法向量朝上.
已知3阶矩阵A的第1行元素全是1,且(1,1,1)T,(1,0,一1)T,(1,一1,0)T是A的3个特征向量,求A.
已知A,B均是3阶非零矩阵,且A2=A,B2=B,AB=BA=0,证明0和1必是A与B的特征值,并且若α是A关于λ=1的特征向量,则α必是B关于λ=0的特征向量.
随机试题
髌骨的作用是
患者男,35岁。近5天来右下后牙肿痛今日全身不适来就诊。查:患者痛苦面容,右面颊部肿胀较明显。右下第一前磨牙远中颈部龋深穿髓,无探痛,Ⅲ度松动叩痛(+++),龈红肿明显,移行沟变平扪诊牙龈肿胀有波动感的方法是
某患者火毒壅盛,背部长疮,流脓,经诊断,处以牛黄醒消丸,其方剂组成为牛黄、麝香、乳香(制)、没药(制)、雄黄。方剂组成中乳香的炮制方法是()
在运用移动平均法预测房地产价格时,一般应按照房地产价格变化的同期长度进行移动平均。()
下列不属于消费税征税范围的有()。
下列关于个人住房贷款的利率说法错误的是()。
根据《企业财务会计报告条例》的规定,国有企业、国有控股的或者占主导地位的企业,应当至少每年一次向本企业的职工代表大会公布财务会计报告,其中需要重点说明的事项有( )。
裁口是指书刊的()。
货币转化为资本的决定性条件是()。
下面是关于PC中的CPU的叙述,其中不正确的是( )。
最新回复
(
0
)