首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(n,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时: (I)β可由α1,α2,α3线性表出,且表示唯一; (Ⅱ)β不可由α1,α2,α3线性表出; (Ⅲ)β可由α1,
设向量组α1=(n,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时: (I)β可由α1,α2,α3线性表出,且表示唯一; (Ⅱ)β不可由α1,α2,α3线性表出; (Ⅲ)β可由α1,
admin
2019-01-19
96
问题
设向量组α
1
=(n,0,10)
T
,α
2
=(一2,1,5)
T
,α
3
=(一1,1,4)
T
,β=(1,b,c)
T
,试问:当a,b,c满足什么条件时:
(I)β可由α
1
,α
2
,α
3
线性表出,且表示唯一;
(Ⅱ)β不可由α
1
,α
2
,α
3
线性表出;
(Ⅲ)β可由α
1
,α
2
,α
3
线性表出,但表示不唯一,求出一般表达式。
选项
答案
考虑线性方程组 k
1
α
1
+k
2
α
2
+k
3
α
3
=β, (1)记其系数矩阵A=(α
1
,α
2
,α
3
)。对该线性方程组的增广矩阵作初等行变换,即 (A,β)=[*] (I)当a≠一10时,r(A)=r(A,β)=3,此时方程组(1)有唯一解,β可由α
1
,α
2
,α
3
唯一地线性表出。 (II)当a=一10,且c≠3b一1时, (A,β)=[*] 可知r(A)≠r(A,β),此时方程组(1)无解,β不可由α
1
,α
2
,α
3
线性表出。 (Ⅲ)当a=一10,且c=3b—1时,(A,β)→[*] 可知r(A)=r(A,β)=2,此时方程组(1)有无穷多解,其全部解为 k
1
=[*],k
2
=l,k
3
=b—l,其中l为任意常数。 β可由α
1
,α
2
,α
3
线性表出,但表示不唯一,其一般表达式为 β=[*]α
1
+lα
2
+(b—l)α
3
其中l为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/YbP4777K
0
考研数学三
相关试题推荐
(12年)已知级数绝对收敛,级数条件收敛,则【】
(05年)已知齐次线性方程组同解,求a,b,c的值.
(97年)设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是【】
(16年)设A,B是可逆矩阵,且A与B相似,则下列结论错误的是【】
(11年)设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由χ-y=0,χ+y=2与y=0所围成的三角形区域.(Ⅰ)求X的概率密度fx(χ);(Ⅱ)求条件概率密度fX|Y(χ|y).
(06年)设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max(X,Y)≤1}=_______.
(90年)设随机变量X和Y相互独立,其概率分布为则下列式子正确的是:【】
设n个n维列向量α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαn线性无关|P|≠0.
设函数f(χ)在χ=a的某邻域内连续,且f(a)为极大值.则存在δ>0,当χ∈(a-δ,a+δ)时必有:【】
设函数z=f(x,y)具有二阶连续偏导数,且≠0,试证明:对任意的常数c,f(x,y)=c为一直线的充分必要条件是(f’y)2.f"xx一2f’x.f’y.f"xy+(f’x)2.f’yy=0.
随机试题
下列账簿中,各单位都需设置的是
要在Web浏览器上显示加粗的文字“供给侧改革”,其HTML语句表示是()
下列各项中,属于激励因素的有()。
先天性输尿管囊肿最常见的好发部位在
下列结肠疾病中最易发展为结肠癌的是
女,45岁,G4P2。月经规律,白带增多半年,性交后阴道流血2个月。近3年未体检。妇科检查发现宫颈重度糜烂状,触血(+),子宫附件未见明显异常。宫颈活检组织病理报告为宫颈鳞状细胞癌,浸润深度为7mm。该患者的临床分期
人们在一定社会条件下拥有土地的经济形式称为()。
∫-33xdx等于:
甲公司2014年年初对A设备投资100000元,该项目2016年年初完工投产,2016年、2017年、2018年年末预期报酬分别为30000元、50000元、60000元,银行存款利率为12%。要求:按复利计算,并按年计息,计算投资额在2016年年初
甲公司2×15年6月30日取得乙公司80%的股份,对乙公司能够实施控制。2×16年7月1日,甲公司向乙公司出售一项专利,账面价值为80万元,售价为100万元。乙公司采用直线法摊销,预计使用年限5年,无残值,假定摊销额计入当期损益。2×16年乙公司按购买日公
最新回复
(
0
)