首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(n,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时: (I)β可由α1,α2,α3线性表出,且表示唯一; (Ⅱ)β不可由α1,α2,α3线性表出; (Ⅲ)β可由α1,
设向量组α1=(n,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时: (I)β可由α1,α2,α3线性表出,且表示唯一; (Ⅱ)β不可由α1,α2,α3线性表出; (Ⅲ)β可由α1,
admin
2019-01-19
44
问题
设向量组α
1
=(n,0,10)
T
,α
2
=(一2,1,5)
T
,α
3
=(一1,1,4)
T
,β=(1,b,c)
T
,试问:当a,b,c满足什么条件时:
(I)β可由α
1
,α
2
,α
3
线性表出,且表示唯一;
(Ⅱ)β不可由α
1
,α
2
,α
3
线性表出;
(Ⅲ)β可由α
1
,α
2
,α
3
线性表出,但表示不唯一,求出一般表达式。
选项
答案
考虑线性方程组 k
1
α
1
+k
2
α
2
+k
3
α
3
=β, (1)记其系数矩阵A=(α
1
,α
2
,α
3
)。对该线性方程组的增广矩阵作初等行变换,即 (A,β)=[*] (I)当a≠一10时,r(A)=r(A,β)=3,此时方程组(1)有唯一解,β可由α
1
,α
2
,α
3
唯一地线性表出。 (II)当a=一10,且c≠3b一1时, (A,β)=[*] 可知r(A)≠r(A,β),此时方程组(1)无解,β不可由α
1
,α
2
,α
3
线性表出。 (Ⅲ)当a=一10,且c=3b—1时,(A,β)→[*] 可知r(A)=r(A,β)=2,此时方程组(1)有无穷多解,其全部解为 k
1
=[*],k
2
=l,k
3
=b—l,其中l为任意常数。 β可由α
1
,α
2
,α
3
线性表出,但表示不唯一,其一般表达式为 β=[*]α
1
+lα
2
+(b—l)α
3
其中l为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/YbP4777K
0
考研数学三
相关试题推荐
(04年)求,其中D是由圆χ2+y2=4和(χ+1)2+y2=1所围成的平面区域(如图)
利用中心极限定理证明:
(1)设系统由100个相互独立的部件组成.运行期间每个部件损坏的概率为0.1.至少有85个部件是完好时系统才能正常工作,求系统正常工作的概率.(Ф()=0.9522)(2)如果上述系统由竹个部件组成,至少有80%的部件完好时系统才能正常工作.问n
设f(χ),φ(χ)在点χ=0的某邻域内连续且χ→0时,f(χ)是φ(χ)的高阶无穷小,则χ→0时,∫0χf(t)sintdt是∫0χtφ(t)dt的()无穷小【】
设α1,α2,…,αm为线性方程组Aχ=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βm=t1αm+t2α1,其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βm也为Aχ=0的一个基础解系.
设随机变量(X,Y)的概率密度为问X与Y是否独立?|X|与|Y|是否独立?
计算二次积分=_______.
将函数f(x)=在点x0=1处展开成幂级数,并求f(n)(1).
在曲线y=e—x(x≥0)上求一点,使过该点的切线与两坐标轴所围平面图形的面积最大,并求出最大面积.
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1;(Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(一1)f"(x)一xf’(x)=ex一1,则下列说法正确的是
随机试题
地方性克汀病的发病原因主要是缺乏
在脑出血的内科疗法中,最重要的是
在工程项目施工前,工程监理单位应当审查施工单位所提交的施工组织设计中的安全技术措施或者专项施工方案是否符合()。
费率的类型包括担保费、承诺费、承兑费、银团安排费、开证费、银行贴现率。()
下列化学课,属于以训练技能为主的课是()。
教师认为行政机天的详细行政行为侵犯其合法仪益,应当自得知具体行政行为之日起()日内提起行政复议申请,法律、法规规定超过此时限的除外。
Mostyoungpeopleenjoysomeformofphysicalactivity.Itmaybeagameofsome【B1】______—football,hockey,golf,ortennis.It
A.Findaplacetoworkon.B.Implementingaworkablefilingsystem.C.Whatisagoodfilingsystem.D.Howtoinvestinarolling
Forreasonsyettobefullyunderstood,oneoutoftenhumanbeingsintheworldisleft-handed,andfromonegenerationtothe
Thepolicehavebeeninterviewingpeopleintheareainthehopethatitwill______furtherinformationaboutthecrime.
最新回复
(
0
)