首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
ɑ1,ɑ2,ɑ3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,ɑ1=(1,2,3,4) T, ɑ2+ɑ3=(0,1,2,3) T.c表示任意常数,则线性方程组Ax=b的通解x=( ).
ɑ1,ɑ2,ɑ3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,ɑ1=(1,2,3,4) T, ɑ2+ɑ3=(0,1,2,3) T.c表示任意常数,则线性方程组Ax=b的通解x=( ).
admin
2019-08-26
72
问题
ɑ
1
,ɑ
2
,ɑ
3
是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,ɑ
1
=(1,2,3,4)
T
,
ɑ
2
+ɑ
3
=(0,1,2,3)
T
.c表示任意常数,则线性方程组Ax=b的通解x=( ).
选项
A、
B、
C、
D、
答案
C
解析
【思路探索】根据非齐次线性方程组解的结构,依次求出其导出组的基础解系和自身的一个特解即可.
解:根据线性方程组解的性质,可知
2α
1
—(α
2
+α
3
)=(α
1
—α
2
)+(α
1
—α
3
)
是非齐次线性方程组Ax=b导出组Ax=0的一个解.因为R(A)=3,所以Ax=0的基础解系含4—3=1个解向量,而
2α
1
—(α
2
+α
3
)=(2,3,4,5)
T
≠0,
故是Ax=0的一个基础解系.因此Ax=b的通解为
α
1
+k(2α
1
—α
2
—α
3
)=(1,2,3,4)
T
+k(2,3,4,5)
T
,k∈R,
即(C)正确.
对于其他几个选项,(A)中
(1,1,l,1)
T
=α
1
—(α
2
+α
3
),
(B)中
(0,1,2,3)
T
=α
2
+α
3
,
(D)中
(3,4,5,6)
T
=3α
1
—2(α
2
+α
3
),
都不是Ax=b的导出组的解.所以(A)、(B)、(D)均不正确.
故应选(C).
【错例分析】本题常见错误是未能准确求出Ax=0的基础解系,主要原因是错将α
2
+α
3
当作Ax=b的解,从而导致错误.
转载请注明原文地址:https://kaotiyun.com/show/YcJ4777K
0
考研数学三
相关试题推荐
设数列{xn}由递推公式xn=(n=1,2,…)确定,其中a>0为常数,x0是任意正数,试证xn存在,并求此极限.
求证:ex+e-x+2cosx=5恰有两个根.
已知=2,求常数a>0和b的值.
铁路一编组站随机地编组发往三个不同地区E1,E2和E3的各2节、3节和4节车皮,求发往同一地区的车皮恰好相邻的概率p.
设二维随机变量(X1,Y1)与(X2,Y2)的联合概率密度分别为求:P{Xi>2Yi}(i=1,2).
求下列不定积分:
设f(x)在(一∞,+∞)上二阶导数连续,f(0)=01)确定a使g(x)在(一∞,+∞)上连续;2)证明对以上确定的a,g(x)在(一∞,+∞)上有连续一阶导数.
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1、λn的特征向量,记f(X)=XTAX/XTX,X∈Rn,X≠0证明:二次型f(X)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值.
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求a的值;
用两种方案进行某种产品的销售,得部分销售量为:A方案:140,138,143,142,144,139;B方案:135,140,142,136.135,140.设两种方案下的销售量均服从正态分布,试在α=0.05下检验两种方案的
随机试题
孟尝君怪其疾也,衣冠而见之。
患者男,因烧伤被送来急诊室,在评估病人时,护士注意到病人的眉毛和鼻毛都没有了。这类型的烧伤属于
2015年1月1日,甲公司从二级市场购入乙公司分期付息、到期还本的债券12万张,以银行存款支付价款1050万元,另支付相关交易费用12万元。该债券系乙公司于2014年1月1日发行,每张债券面值为100元,期限为3年,票面年利率为5%,每年年末支付当年度利息
因素比较法的优点有()。
负责初中教师资格认定的教育行政部门是()
下面不属于水彩画“干画法”技法的是()。
师生关系表现在人格上的特征是()
学生所享有的受他人尊重、保持良好形象及尊严的权利指学生的()。
差分方程yx+1一的通解是________.
A、Thebeachisapopulartouristresort.B、Theemergencyservicesareefficient.C、Thebeachisagoodplacetowatchthetide.
最新回复
(
0
)