首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上非负,在(a,b)内f"(x)>0,f’(x)<0.I1=(f(b)+f(a)),I2=∫abf(x)dx,I3=(b一a)f(b),则I1、I2、I3的大小关系为 ( )
设f(x)在[a,b]上非负,在(a,b)内f"(x)>0,f’(x)<0.I1=(f(b)+f(a)),I2=∫abf(x)dx,I3=(b一a)f(b),则I1、I2、I3的大小关系为 ( )
admin
2015-08-14
57
问题
设f(x)在[a,b]上非负,在(a,b)内f"(x)>0,f’(x)<0.I
1
=
(f(b)+f(a)),I
2
=∫
a
b
f(x)dx,I
3
=(b一a)f(b),则I
1
、I
2
、I
3
的大小关系为 ( )
选项
A、I
1
≤I
2
≤I
3
B、I
2
≤I
3
≤I
1
C、I
1
≤I
3
≤I
2
D、I
3
≤I
2
≤I
1
答案
D
解析
如图所示,I
1
是梯形AabB的面积,I
2
是曲边梯形AabB的面积,I
3
是长方形A
1
abB的面积.由于f’(x)<0,.f"(x)>0,y=f(x)单调减少且图形为凹.由图1.3—1可知I
3
≤I
2
≤I
1
.
转载请注明原文地址:https://kaotiyun.com/show/b034777K
0
考研数学二
相关试题推荐
[*]
设f(x)=1/πx+1/sinπx-1/π(1-x),x∈[1/2,1),试补充定义使得f(x)在[1/2,1]上连续.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设A=E-ααT,其中α为n维非零列向量,证明:(1)A2=A的充分必要条件是α为单位向量;(2)当α是单位向量时A为不可逆矩阵.
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是可逆.
设α1=则α1,α2,α3,α4的一个极大线性无关组为________,其余的向量用极大线性无关组表示为________.
设y=f(x)=,(Ⅰ)讨论f(x)在x=0处的连续性;(Ⅱ)求f(x)的极值点与极值。
设不恒为零的函数f(x)在[0,1]上有二阶连续导数,且f(0)=f(1)=0.记M={|f(x)|)}.证明:至少存在一点ξ∈(0,1),使得|f’(ξ)|≥2M;
设f(x)在[0,1]上有二阶连续导数,且f(1)=f’(1)=0.证明:∫01f(x)dx=1/2∫01x2f"(x)dx;
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求正交矩阵Q,使得Q-1AQ=A.
随机试题
设随机变量X~N(2,4),则D(2X+5)=()
诉讼时效中止后,从中止时效原因消除之日起,诉讼时效期间()
健康促进的核心策略是()。
在下列风险识别方法中,主要作用在于建立初始风险清单的是()。
NEC合同和FIDIC“新红皮书”均对工程预付款作出了规定。下列表述中,不符合FIDIC“新红皮书”规定的是()。
关于雨期填筑路堤,下列表述正确的有()。
根据企业所得税法的规定,以下依法收取的()可以作为不征税收入。
下列各项不是培训与开发需求分析的主要来源的是()。
指出上述解决方案存在什么问题?需要增加什么设备?如何连接?若在该局域网实现VLAN,路由器将起什么作用?
Writeashortessaybasedonthepicturebelow.YoushouldstartyouressaywithabriefaccountofTraveling.Andthenexplain
最新回复
(
0
)