首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上非负,在(a,b)内f"(x)>0,f’(x)<0.I1=(f(b)+f(a)),I2=∫abf(x)dx,I3=(b一a)f(b),则I1、I2、I3的大小关系为 ( )
设f(x)在[a,b]上非负,在(a,b)内f"(x)>0,f’(x)<0.I1=(f(b)+f(a)),I2=∫abf(x)dx,I3=(b一a)f(b),则I1、I2、I3的大小关系为 ( )
admin
2015-08-14
51
问题
设f(x)在[a,b]上非负,在(a,b)内f"(x)>0,f’(x)<0.I
1
=
(f(b)+f(a)),I
2
=∫
a
b
f(x)dx,I
3
=(b一a)f(b),则I
1
、I
2
、I
3
的大小关系为 ( )
选项
A、I
1
≤I
2
≤I
3
B、I
2
≤I
3
≤I
1
C、I
1
≤I
3
≤I
2
D、I
3
≤I
2
≤I
1
答案
D
解析
如图所示,I
1
是梯形AabB的面积,I
2
是曲边梯形AabB的面积,I
3
是长方形A
1
abB的面积.由于f’(x)<0,.f"(x)>0,y=f(x)单调减少且图形为凹.由图1.3—1可知I
3
≤I
2
≤I
1
.
转载请注明原文地址:https://kaotiyun.com/show/b034777K
0
考研数学二
相关试题推荐
求f(x)=(x3+x)/(x2-1)arctanxe1/(x-2)的间断点,并判断其类型.
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在,n维非零列向量α,β,使得A=αβT.
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是可逆.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明:α,Aα线性无关;(2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设X和Y相互独立且服从相同的分布,X~,p+q=1,0<p<1,又(1)求XZ的分布律;(2)求p取何值时,X和Z相关,说明理由。
已知抛物线y=px2+qx(其中p<0,q>0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S.(Ⅰ)问p和q何值时,S达到最大值?(Ⅱ)求出此最大值.
设函数f(x)满足关系f″(x)+f′2(x)=x,且f(0)=0,则().
设随机变量X与Y的相关系数为1/3,且E(X)=0,E(Y)=1,E(X2)=4,E(Y2)=10,则E[(X+Y)2]________.
随机试题
在进行重置成本计算时,如果同时可以取得复原成本和更新成本,应选用复原成本。()
患者女性,45岁,水肿1个月,从下肢开始,渐延及全身,皮肤绷紧光亮,胸脘痞闷,烦热口渴,小便短赤,大便不爽,日一行,不成形,舌红苔黄腻,脉濡数。治法应为
(2015年)案情:杨之元开设古玩店,因收购藏品等所需巨额周转资金,即以号称“镇店之宝”的一块雕有观音图像的翡翠(下称翡翠观音)作为抵押物,向胜洋小额贷款公司(简称胜洋公司)贷款200万元,但翡翠观音仍然置于杨之元店里。后,古玩店经营不佳,进人亏损状态,无
检验检测设备应由经过授权的人员操作,还应保存对检验检测具有重要影响的设备的记录,软件不属于设备范畴。()
工程竣工后,由()编写工程竣工报告,还应根据工程特点,性质进行全面施工组织与管理总结。
当城市消防远程监控系统采用有线通信方式传输时可选择()接入方式。
下列各项中,属于有效合同的是()。
甲公司发生下列有关交易性金融资产的业务:(1)2013年1月8日,甲公司购入丙公司发行的公司债券,该笔债券于2012年7月1日发行,面值为2500万元,票面利率为4%,债券利息按年支付。甲公司将其划分为交易性金融资产,支付价款为2600万元(
关于刑事强制措施的批准和执行,下列表述正确的是()。
得了慢性粒细胞白血病的患者是很绝望的,因为除了有幸能进行造血干细胞移植的患者外,就只有死路。现在好了,瑞士诺华公司研制出了特效药“格列卫”,能够救命。它是治疗慢性粒细胞白血病和胃肠间质瘤的抗癌药,成为这类绝症的首选治疗方案。有了“格列卫”,此类癌症患者有了
最新回复
(
0
)