首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的秩为1,试证: A可以表示成n×1矩阵和1×n矩阵的乘积;
设n阶矩阵A的秩为1,试证: A可以表示成n×1矩阵和1×n矩阵的乘积;
admin
2016-07-22
36
问题
设n阶矩阵A的秩为1,试证:
A可以表示成n×1矩阵和1×n矩阵的乘积;
选项
答案
将A以列分块,则r(A)=r(α
1
,α
2
,…,α
n
)=1表明列向量组α
1
,α
2
,…,α
n
的极大线性无关组有一个非零向量组成,设为α
i
=[a
1
,a
2
,…,a
n
]
T
(≠0),其余列向量均可由α
i
线性表出,设为α
j
=b
j
α
i
(j=1,2,…,n;j=i时,取b
i
=1),则 A=[α
1
,α
2
,…,α
n
]=[b
1
α
i
,b
2
α
i
,…,b
n
α
i
]=α
i
[b
1
,b
2
,b
n
]=[*][b
1
,b
2
,…,b
n
].
解析
转载请注明原文地址:https://kaotiyun.com/show/dcw4777K
0
考研数学一
相关试题推荐
设f‘(x)=1+∫0x[6cos2t-f(t)]dt,且f(0)=1,计算I=∫0x[f(x)/x+1)+f’(x)ln(1+x)]dx
设函数y=f(x)由参数方程(0<t≤1)确定求f(x)在[1,﹢∞)上的值域
设线性无关的函数y1,y2,y3都是非齐次线性微分方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2为任意常数,则该方程的通解为()
设矩阵A=与对角矩阵A相似求a的值
设都是线性方程组AX=0的解向量,只要系数矩阵A为().
设f(x)在[0,π/2]上二阶连续可导,且f’(0)=0,证明:存在ξ,η,ζ∈(0,π/2),使得
设向量组试问:当a,b,c满足什么条件时(1)β可由a1,a2,a3线性表出,且表示法唯一;(2)β可由a1,a2,a3线性表出,但表示法不唯一,并求出一般表达式.(3)β不能由a1,a2,a3线性表出;
设向量组(Ⅰ):a1,a2,a3;(Ⅱ):a1,a2,a4的秩分别为秩(Ⅰ)=2,秩(Ⅱ)=3.证明:向量组a1,a2,a3+a4的秩等于3.
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
随机试题
凉血,解毒,利咽宜选
案情:A公司、B公司、c公司和伊某、程某共同出资设立了玉泉有限责任公司,其中A公司出资40%,B公司和C公司各出资20%,伊某和程某各出资10%。公司成立后,B公司未征求其他股东的意见,直接将自己10%的股份转让给C公司。伊某拟将自己的股份转让给宋某,书面
在下列项目组织形式中,项目经理扮演的角色是项目官员的形式是()。
银行监管法律体系框架由下到上的层级是()
已知等差数列{an}满足a2+a7=15,则a3+a6=().
不确定性避免是指在任何一个社会中,人们对于不确定的、含糊的、前途未卜的情景,都会感到面对的是一种威胁,从而总是试图加以防止。根据上述定义,下列不属于不确定性避免的是:
由市场决定资源配置的条件是()。
刑事责任
下列有关宪法表述,哪些是正确的?()
Wefoundthatbaratlast.Ididn’thavetoaskagain,forthereitwasinbigredneonlettersoverthewindow—StarBar.There
最新回复
(
0
)