首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的秩为1,试证: A可以表示成n×1矩阵和1×n矩阵的乘积;
设n阶矩阵A的秩为1,试证: A可以表示成n×1矩阵和1×n矩阵的乘积;
admin
2016-07-22
35
问题
设n阶矩阵A的秩为1,试证:
A可以表示成n×1矩阵和1×n矩阵的乘积;
选项
答案
将A以列分块,则r(A)=r(α
1
,α
2
,…,α
n
)=1表明列向量组α
1
,α
2
,…,α
n
的极大线性无关组有一个非零向量组成,设为α
i
=[a
1
,a
2
,…,a
n
]
T
(≠0),其余列向量均可由α
i
线性表出,设为α
j
=b
j
α
i
(j=1,2,…,n;j=i时,取b
i
=1),则 A=[α
1
,α
2
,…,α
n
]=[b
1
α
i
,b
2
α
i
,…,b
n
α
i
]=α
i
[b
1
,b
2
,b
n
]=[*][b
1
,b
2
,…,b
n
].
解析
转载请注明原文地址:https://kaotiyun.com/show/dcw4777K
0
考研数学一
相关试题推荐
积分I=dr=________
设f(x)在[0,1]上有二阶连续导数,则下列说法正确的是()①若f’’(x)>0,则∫01f(x)dx>f(1/2)②若f’’(x)>0,则∫01f(x)dx<f(1/2)③若f’’(x)<0,则∫01f(x)dx>f(
设A是秩为1的3阶实对称矩阵,λ1=2是A的特征值,对应特征向量为a1=(﹣1,1,1)T,则方程组Ax=0的基础解系为()
设f(x)在[0,π/2]上二阶连续可导,且f’(0)=0,证明:存在ξ,η,ζ∈(0,π/2),使得
设A为三阶实对称矩阵,且满足条件A2+2A=O.已知r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
求函数y=(x-1)的单调区间与极值,并求该曲线的渐近线.
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=-f(ξ)cotξ.
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,-3,0,则|B-1+2E|=________.
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
四名乒乓球运动员——1,2,3,4参加单打比赛,在第一轮中,1与2比赛,3与4比赛.然后第一轮中的两名胜者相互比赛决出冠亚军,两名败者也相互比赛决出第三名和第四名.于是比赛的一种最终可能结果可以记作1324(表示1胜2,3胜4,然后1胜3,2胜4).写
随机试题
Helentypes______.
急性糜烂性胃炎治疗不应使用
均质土坝的防渗体是()。
下列截面形状的钢筋混凝土梁中,抗弯刚度和抗扭能力大的是()。
根据《公司法》的规定,下列关于股份有限公司股份发行的表述不正确的是( )。
企业当期计提的坏账准备应该计入信用减值损失,且计提后不能转回。()
幂级数的和函数是_____.
记时器控件能有规律的以一定时间间隔触发【】事件,并执行该事件过程中的程序代码。
A、USaidprogramsin21countriesoverthenextthreeyearswillbehaltedB、USaidmissionsin21countriesoverthenextthree
A、Hesavesmuchmoneybecauseheneedn’tdrivecarortakebus.B、Hedoesn’thavetogetupontimeeveryday.C、Hecaneasilye
最新回复
(
0
)