首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT,试求: 矩阵A的特征值和特征向量.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT,试求: 矩阵A的特征值和特征向量.
admin
2016-01-11
65
问题
设向量α=(a
1
,a
2
,…,a
n
)
T
,β=(b
1
,b
2
,…,b
n
)
T
都是非零向量,且满足条件α
T
β=0.记n阶矩阵A=αβ
T
,试求:
矩阵A的特征值和特征向量.
选项
答案
设λ为A的任一特征值,A的属于λ的特征向量为ξ,则Aξ=Aξ,于是A
2
ξ=λAξ=A
2
ξ由(1)知,A
2
=O,故有λ
2
ξ=0.因为特征向量ξ≠0,所以λ
2
=0,即λ=0,故矩阵A的特征值全为零.不妨设向量α,β的分量a
1
≠0,b
1
≠0. 对齐次线性方程组(0.E-A)x=0的系数矩阵作初等行变换,得[*] 于是A的属于特征值λ=0的全部特征向量为k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
,其中k
1
,k
2
,…,k
n-1
是不全为零的任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/ee34777K
0
考研数学二
相关试题推荐
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(Ⅱ)设,求出可由两组向量同时表示的向量.
设A,B,C是n阶矩阵,并满足ABAC=E,则下列结论中不正确的是
设A=(β-α1-2α2-3α3,α1,α2,α3),α1,α2,α3,β均是3维列向量,则方程组Ax=β有特解为________.
设A=E-ααT,α为3维非零列向量.(I)求A-1,并证明:α与Aα线性相关;(Ⅱ)若α=(α,α,α)T(a≠0),求正交矩阵Q,使得QTAQ=A;(Ⅲ)在(Ⅱ)的基础上,A与A2是否合同?说明理由.
设α=(1,a,1)T(a>0)是A-1的特征向量,其中A=,则a=________.
设幂级数an(x+1)n在x=4处条件收敛,在x=-6处发散,则幂级数的收敛域为________.
设P{X=0)=1/4,P{X=1}=3/4,P{Y=-1/2}=1,3维向量组α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为()
设矩阵满足CTAC=B.求正交矩阵Q,使得Q-1AQ=A;
设Aij为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B.求可逆矩阵P,使得PTAP=B.
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.k为何值时,A*+kE是正定矩阵?
随机试题
计划发行债券的公司,担心未来融资成本上升,通常会利用利率期货进行()来规避风险。
下列词中,和其他三项不属于一个语义场的词是()
目标监测包括()
A.下肢关节主动屈伸运动B.下肢关节被动旋转运动C.桥氏运动D.空踩自行车运动E.持续性被动运动(CPM)股骨颈骨折病人术后第2周可进行
在诊断能量范围内不产生的效应是
医学道德的原则不包括
微分方程y’’-3y’+2y=xex的待定特解的形式是:
______animportantdecisionmoreonemotionthanonreason,youwillregretitsoonerorlater.
(1)Muckyroads,unpredictableweather,andwetgroundthatsagsbeneathyourfeet.ItmustbespringtimeinNewEngland.(2)
Interruption,moresurelythananythingelse,killsconversation.Thebestoftalkersinterrupt【C1】______inconversation.Howe
最新回复
(
0
)