首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT,试求: 矩阵A的特征值和特征向量.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT,试求: 矩阵A的特征值和特征向量.
admin
2016-01-11
42
问题
设向量α=(a
1
,a
2
,…,a
n
)
T
,β=(b
1
,b
2
,…,b
n
)
T
都是非零向量,且满足条件α
T
β=0.记n阶矩阵A=αβ
T
,试求:
矩阵A的特征值和特征向量.
选项
答案
设λ为A的任一特征值,A的属于λ的特征向量为ξ,则Aξ=Aξ,于是A
2
ξ=λAξ=A
2
ξ由(1)知,A
2
=O,故有λ
2
ξ=0.因为特征向量ξ≠0,所以λ
2
=0,即λ=0,故矩阵A的特征值全为零.不妨设向量α,β的分量a
1
≠0,b
1
≠0. 对齐次线性方程组(0.E-A)x=0的系数矩阵作初等行变换,得[*] 于是A的属于特征值λ=0的全部特征向量为k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
,其中k
1
,k
2
,…,k
n-1
是不全为零的任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/ee34777K
0
考研数学二
相关试题推荐
设A,B均是n阶方阵,已知A-E可逆,|B|=1,且(A-E)-1=B*-E,其中B*为B的伴随矩阵.则A-1=________.
设n维实列向量α满足αTα=2,A,B,E均为n阶矩阵,且A(E-2ααT)=B,则()
设矩阵满足CTAC=B.求正交矩阵Q,使得Q-1AQ=A;
设,下列矩阵中与A既不相似也不合同的是()
设A是3阶实对称矩阵,二次型f(x1,x2,x3)=xTAx经正交变换x=Qy后的标准形为y12+y22-y32,则二次型g(x1,x2,x3)=xTAA*x经可逆线性变换x=Py后的规范形为()
设Aij为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B.求可逆矩阵P,使得PTAP=B.
设A是3阶方阵,λ1=1,λ2=-2,λ3=-1为A的特征值,对应的特征向量依次为a1,a2,a3,P=(3a2,2a3,-a1),则P-1(A*+E)P=()
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.k为何值时,A*+kE是正定矩阵?
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.求正交变换x=Qy,将二次型f(x1,x2,x3)=xTAx化为标准形;
设向量a=(1,1,-1)T是的一个特征向量.A是否相似于对角矩阵?说明理由.
随机试题
孙某委托吴某为代理人购买一批货物,吴某的下列行为中违反法律法规的是()。
《春风沉醉的晚上》是郁达夫的散文代表作。()
男性,50岁,慢性支气管疾患10余年,近3个月病情加重,痰中找到硫黄颗粒,右胸壁见瘘管,胸片示右下叶片状阴影,病变累及局部胸膜、胸壁,最可能的诊断是
造影时病人出现重度碘过敏反应,最有效的措施是
A、同一药物,剂型不同,其作用的快慢、强度、持续时间不同B、同一药物,制成同一剂型,由于制备工艺不同而表现不同C、同一药物,制成同一剂型,由于处方组成不同而表现不同D、同一药物,剂型不同,其副作用、毒性不同E、同一药物,
一般情况下,()的建筑工程可以不申请施工许可证。
(操作员:李主管;账套:501账套;操操作日期:2015年1月31日)修改并设置工资项目。工资表名:1月份工资表项目名称:岗位工资类型:数字长度:12小数:2
Alargenumberofcars______parkedinfrontofmyhouse.
可行性分析报告的重点内容是对建设方案的可行性分析和【】估计,最后得出分析结论。
程序设计方法要求在程序设计过程中
最新回复
(
0
)