首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,a1,a2,a3分别是属于特征值λ1,λ2,λ3的特征向量,若a1,A(a1+a2),A2(a1+a2+a3)线性无关,则λ1,λ2,λ3满足_____________.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,a1,a2,a3分别是属于特征值λ1,λ2,λ3的特征向量,若a1,A(a1+a2),A2(a1+a2+a3)线性无关,则λ1,λ2,λ3满足_____________.
admin
2019-11-25
76
问题
设λ
1
,λ
2
,λ
3
是三阶矩阵A的三个不同特征值,a
1
,a
2
,a
3
分别是属于特征值λ
1
,λ
2
,λ
3
的特征向量,若a
1
,A(a
1
+a
2
),A
2
(a
1
+a
2
+a
3
)线性无关,则λ
1
,λ
2
,λ
3
满足_____________.
选项
答案
≠0
解析
令x
1
a
1
+x
2
A(a
1
+a
2
)+x
3
A
2
(a
1
+a
2
+a
3
)=0,即(x
1
+λ
1
x
2
+λ
2
1
x
3
)a
1
+(λ
2
x
2
+λ
2
2
x
3
)a
2
+λ
2
3
x
3
a
3
=0,则有 x
1
+λ
1
x
2
+λ
2
1
x
3
=0,λ
2
x
2
+λ
2
2
x
3
=0,λ
2
3
x
3
=0,因为x
1
,x
2
,x
3
只能全为零,所以
≠0
λ
2
λ
3
≠0.
转载请注明原文地址:https://kaotiyun.com/show/foD4777K
0
考研数学三
相关试题推荐
设A为n阶实矩阵,则对线性方程组(I)AX=0和(Ⅱ)ATAX=0,必有()
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=O的充要条件是r(A)<n.
设A是3×3矩阵,α1,α2,α3是3维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)证明Aα1,Aα2,Aα3线性无关;(2)求|A|.
设向量组α1=[a11,a21,…an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,…,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(唯一零解).
设γ1,γ2,…,γt和η1,η2…ηs分别是Ax=0和Bx=0的基础解系.证明:Ax=0和Bx=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
将函数f(x)=arctan展开成x一2的幂级数,并求出此展开式成立的开区间.
设n维向量αs可由α1,α2,…,αs-1唯一线性表示,其表出式为αs=α1+2α2+3α3+…+(s一1)αs-1(1)证明齐次线性方程组α1x1+α2x2+…+αi-1xi-1+αi+1xi+1+…+αsxs=0(
设函数f(x)可导,且曲线y=f(x)在点(x0,f(x0))处的切线与直线y=2一x垂直,则当△x→0时,该函数在x=x0处的微分dy是()
设平面区域D由曲线y=(xy3一1)dσ等于()
设函数y(x)在(-∞,+∞)内有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。(Ⅰ)试将x=x(y)所满足的方程变换成y=y(x)所满足的微分方程;(Ⅱ)求解变换后的微分方程的通解。
随机试题
中外合资有限责任公司董事的法定任期是()
关于横膈的叙述,错误的是
造成医患交往障碍的患者方面的最常见原因是
在侦查过程中,下列哪些行为违反我国刑事诉讼法的规定?(2013年卷二第69题)
某报建单位申请行政许可,规划主管与行政相对人形成了一种行政法律关系。在这种关系中,申请报建项目属于()
行政层级式组织形式最适宜的环境是( )。
下列关于契税计税根据的表述中,符合法律制度规定的有()。
[2012年10月]设实数x、y满足x+2y=3,则x2+y2+2y的最小值为()。
WhichofthefollowingisNOTcorrect?
Myfather’sreactiontothebankbuildingat43rdStreetandFifthAvenueinNewYorkcitywasimmediateanddefinite:"Youwon’
最新回复
(
0
)